Metal oxide monolayers or clusters anchored to an oxide support are important catalysts for industrial processes. Typically, a catalyst exhibits greater activity as a monolayer (ML) than as a thicker film. More importantly, predictability of the interface structure of the supported oxide would have an enormous impact upon our understanding of numerous chemical processes, since the structure of the catalyst affects chemical reactions, as, for example, in the proposed case of NO decomposition. Herein, we demonstrate with atomic-scale sensitivity how to follow the redox-induced surface-site exchange of cations on an oxide support as well as the concurrent changes in the oxidation states of the supported cations. To accomplish this, we have used in situ X-ray standing-wave (XSW) atomic three-dimensional (3D) atomic imaging combined with ex situ X-ray photoelectron spectroscopy (XPS) and X-ray absorption fine structure (XAFS) measurements.

In this study, we monitored the reversible changes during the redox cycle of a 1/3 ML WO\textsubscript{x}/α-Fe\textsubscript{2}O\textsubscript{3}(0001) interface grown by atomic layer deposition (ALD). W atomic maps and XPS spectra were recorded for the as-deposited (AD), oxidized (Ox), and reduced (Re) interfaces. Reversibility was demonstrated by observing that the results of the reoxidized (Ox2) interface matched those of the Ox surface. While redox-induced chemical shifts in XPS for catalytically active cations are well-known, there are (to our knowledge) no predictions or measurements that clearly show redox-induced cation migration from one surface symmetry site to another. Our present study of a 1/3 ML WO\textsubscript{x}/α-Fe\textsubscript{2}O\textsubscript{3}(0001) interface is the first report in which a surface reaction has been observed to cause a complete migration of a ML or sub-ML species from one surface site to another surface site that is symmetry-inequivalent.

For this study, a polished hematite(0001) mineral single crystal was oxygen-annealed and exposed to a single ALD growth cycle that used WF\textsubscript{6} [see the Supporting Information (SI) for details]. Atomically flat terraces were observed by atomic-force microscopy (AFM) before and after the ALD and after the redox treatment. The sample was removed from the ALD reactor and placed inside a beryllium-dome reaction chamber that was mounted on a diffractometer for in situ XSW measurements at the Advanced Photon Source (APS) 5ID-C station. A W coverage of 0.31 ML was determined by X-ray fluorescence (XRF) and 10% W6+ and 70% W5+ with these measured amplitudes and phases generates a model-independent 3D map, ρ(r), for the XRF-selected atomic species. The XSW W L fluorescence data and analysis for the AD, Ox, and Re WO\textsubscript{x}/α-Fe\textsubscript{2}O\textsubscript{3}(0001) interfaces and projections of the α-Fe\textsubscript{2}O\textsubscript{3} ball-and-stick model. The small white balls represent Fe cations, and the larger brown balls are O anions. The map for the Ox surface is recovered after a second oxidation.

The single-crystal XSW method uses dynamical Bragg diffraction to generate an E-field intensity pattern below and above the surface that has a periodicity equivalent to the diffraction planes. Analysis of the characteristic XRF modulation from a surface adatom species while scanning through the \(\mathbf{H} = h\mathbf{k} \mathbf{l} \) Bragg reflection produces the Fourier amplitude (\(\mathbf{f}_H \)) and phase (\(\mathbf{P}_H \)) of that atom’s distribution. The XSW method has been reviewed elsewhere. The Fourier summation with these measured amplitudes and phases generates a model-independent 3D map, ρ(r), for the XRF-selected atomic species.

\[
ρ(r) = 1 + 2 \sum_{\mathbf{H} \neq 0} \frac{f_\mathbf{H}}{P_\mathbf{H}} \cos[2\pi P_\mathbf{H} \cdot \mathbf{H} \cdot r] \tag{1}
\]

The XSW W L fluorescence data and analysis for the AD, Ox, and Re surfaces show striking differences (Figure S5). The measured \(f_\mathbf{H} \) and \(P_\mathbf{H} \) values (Table S1) show that the W atomic distribution for the AD surface is vertically correlated but laterally uncorrelated to the substrate lattice, whereas the Ox and Re surfaces are 3D-correlated. The Ox and Re W Fourier components are similar in the (0006) normal direction but significantly different in the two off-normal directions. This indicates lateral differences in the W distribution. Furthermore, Ox2 gives almost the same \(f_\mathbf{H} \) and \(P_\mathbf{H} \) as Ox, indicating reversibility of this redox reaction.

By inserting the XSW-measured Fourier components into eq 1, we generated the 3D W atomic density maps shown in Figure 1. For purposes of registry, Figure 1 shows cuts of the measured W maps superimposed on the projection of the α-Fe\textsubscript{2}O\textsubscript{3} substrate ball-and-stand model. For the α-Fe\textsubscript{2}O\textsubscript{3}(0001) surface, there are two symmetry-inequivalent Fe sites, A and B, above the topmost oxygen layer. These are symmetrically equivalent to the two occupied Fe octahedral sites in the bulk. The A site is located closer to its
underlying oxygen trimer than the B site. The 3D W maps show that for the Ox surface, W⁶⁺ cations occupy only B sites, while in the reduced state, tungsten cations occupy both A and B sites.

Figure 2 shows our proposed models for explaining the above observations. These models are partially based on our earlier study of V⁰₂Fe₂O₃(0001). For the Ox surface, our model shows W in the Fe B site, as measured by XSW, and proposes a local structure similar to the WO₃ tetragonal crystal structure, which is composed of six W–O bonds with some distortion. This local structure is based on a comparison of our XAFS measurements for the Ox sample with those for a standard WO₃ powder sample (Figures S6 and S7). The reduced state is more complex, since the XSW map shows W⁵⁺ cations in both the A and B sites. Figure 2 illustrates a few possible structures: isolated WO₃ in either A or B sites, with one W=O bond above the surface and three W–O-substrate bonds, or a dimer structure as proposed in ref 12, with W replacing V.

To quantify the W occupation fractions (cₓ) and heights (zₓ) for sites A and B in the Ox, Re, and Ox2 states, we used a least-squares global fit of a model to the measured Fourier components for the W atomic distribution:

\[F_{R} = f_{B} \exp(2\pi i P_{B}) = c_{A} \exp[2\pi i (h + 3z_{A}/3)] + c_{B} \exp[2\pi i (h + 2k + 3z_{B}/3)]. \]

The parameters from the best fits, which are listed in Table 1, quantitatively show the movement of W cations during redox reactions. In this table, c_A ≈ 0.7, indicating that 70% of the total W are ordered in both redox states. The remaining W atoms are measured to be in an uncorrelated distribution relative to the substrate lattice. Since AFM and grazing-incidence small-angle X-ray scattering (at APS 12ID-C) showed no evidence of nanocluster formation, the uncorrelated W cations are most likely associated with hematite surface defect sites.

1.45 Å, respectively. A and B sites are close to the original bulklike Fe heights of 0.85 Å and 1.45 Å, respectively. The W heights in the Ox state are all close to the original bulklike Fe heights of 0.85 and 1.45 Å, respectively. The parameters from the best fits, which are listed in Table 1, quantitatively show the movement of W cations during redox reactions. In this table, c_A ≈ 0.7, indicating that 70% of the total W are ordered in both redox states. The remaining W atoms are measured to be in an uncorrelated distribution relative to the substrate lattice. Since AFM and grazing-incidence small-angle X-ray scattering (at APS 12ID-C) showed no evidence of nanocluster formation, the uncorrelated W cations are most likely associated with hematite surface defect sites.

<table>
<thead>
<tr>
<th>surface</th>
<th>c_A</th>
<th>c_B</th>
<th>z_A (Å)</th>
<th>z_B (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ox</td>
<td>0.04(1)</td>
<td>0.64(1)</td>
<td>1.58(2)</td>
<td></td>
</tr>
<tr>
<td>Re</td>
<td>0.31(1)</td>
<td>0.36(1)</td>
<td>0.88(3)</td>
<td>1.46(2)</td>
</tr>
<tr>
<td>Ox2</td>
<td>0.05(7)</td>
<td>0.61(8)</td>
<td>1.54(7)</td>
<td></td>
</tr>
</tbody>
</table>

* z = 0 is at the bulklike oxygen plane.

Figure 2. Proposed models for the fully reduced (Re) and oxidized (Ox) WO₆(α-Fe₂O₃(0001)) interfaces that are consistent with the XSW-measured W atomic maps and the 5+ and 6+ oxidation states found by XPS.

Table 1. Best-fit Parameters for the W Adsorption Structure Model, Where cₓ and zₓ Are the W Occupation Fraction and Height, Respectively, for Site X (X = A, B); For Comparison, Fe in Bulklike α-Fe₂O₃ Has z₂ = 0.85 Å and z₂ = 1.45 Å

References