Atomic-Scale View of VOₓ–WOₓ Coreduction on the α-Al₂O₃ (0001) Surface

Martin E. McBriarty,† Gavin P. Campbell,‡ Tasha L. Drake,‡ Jeffrey W. Elam,‖ Peter C. Stair,‡,§ Donald E. Ellis,‡& and Michael J. Bedzyk*,†

†Department of Materials Science and Engineering, ‡Department of Chemistry, and §Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, United States
‖Energy Systems Division and †Chemical Sciences & Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States

Supporting Information

ABSTRACT: The catalytic activity of oxide-supported vanadium oxide is improved by the presence of tungsten oxide for the selective catalytic reduction of nitric oxides. We propose a mechanism for V–W synergy through studies of the reduction–oxidation behavior of near-monolayer VOₓ and WOX species grown by atomic layer deposition on the α-Al₂O₃ (0001) single crystal surface. In situ X-ray standing wave measurements reveal an overlayer of W⁶⁺ species that is correlated with the substrate lattice as well as a redox-reversible shift from uncorrelated V⁵⁺ to correlated V⁴⁺. X-ray photoelectron spectroscopy and electronic structure calculations show a partial reduction of W⁶⁺ in the presence of V⁴⁺, improving the Bronsted acidity in mixed V–W catalyst systems. This mechanism of V–W synergy suggests that control of W d-states might be used as a design parameter for Bronsted acid sites in multicomponent oxide catalysts.

I. INTRODUCTION

Oxide-supported tungsten oxide provides Bronsted acid sites for a variety of industrially relevant reactions.¹–⁴ The mechanism of Bronsted acidity is thought to involve a reduction from W⁶⁺ to a transient state W⁶⁺(δ−) upon exposure to a reductant,³,⁴ attributed to the appearance of a d–d transition state near the Fermi energy. However, there is little evidence of low-coverage oxide-supported W⁶⁺ reducing except at >1 monolayer (ML) catalyst coverage or under severe reducing conditions.⁵

Oxide-supported vanadia is promoted by W for the selective catalytic reduction of nitric oxide with ammonia⁹–¹² and other reactions.¹³,¹⁴ By itself, oxide-supported V has been proposed to play two roles in this reaction: it provides Bronsted acid sites for NH₃ adsorption, which subsequently activate nearby redox sites for NO adsorption and N–N interaction.¹⁵ The promotional effect of W may be structural, as W forms mixed oxide layers with V and prevents the aggregation of VOₓ species into less reactive nanoparticles.¹¹,¹⁵,¹⁶ However, the promotional effect of W may also relate to its Bronsted acidity, and indeed the addition of W to a V-loaded catalyst drastically increases the number of available Bronsted acid sites.⁶,¹²,¹³

We investigated the mechanism of V–W synergy by pairing surface- and interface-sensitive X-ray scattering and spectroscopy with electronic structure theory, using the relatively inert α-Al₂O₃ (0001) single crystal surface as a fixed “stage” upon which to study the fundamental chemistry of the V–W interaction. We find a physical foundation of this chemical synergy that derives from the electronic structure of V–W mixed oxides and is consistent with previous work on this complex solid catalyst.

II. METHODS

Single-side epi-polished α-Al₂O₃ (0001) wafers from Rubicon Technologies (miscut angle ~0.2°) were cleaved into 10 mm × 10 mm × 1 mm substrates. The substrates were sonicated in acetone and then methanol and finally rinsed in ultrapure (18 MΩ cm) DI water before drying under a compressed air jet. Substrates were then annealed in a tube furnace for 4 h at 1200 °C in flowing dry air.¹⁷ Thin films of vanadia were prepared by atomic layer deposition (ALD) onto the α-Al₂O₃ crystals using a viscous flow reactor maintained at 1 Torr under vacuum by flowing 200 sccm N₂. Crystal surfaces were cleaned in situ at 100 °C by flowing ozone at a rate of 200 sccm for 10 min. Vanadium oxytriisopropoxide (VOTP, Sigma-Aldrich) and Millipore water were then alternately dosed into the reactor.¹⁸ Each dose was separated by purges of N₂ to prevent gas phase reactions.

Received: May 20, 2015
Revised: June 17, 2015
Published: June 18, 2015
between the precursors. The dose and purge length was 30 s per step (2 min per ALD cycle). To ensure sufficient VOTP pressure in the vapor phase, the vessel containing the VOTP was heated to 45 °C. To prevent condensation, the line leading from the VOTP vessel to the reactor was heated to 100 °C.

For W deposition, substrates were loaded into an ALD reactor at 200 °C, which was pumped to 1 Torr and subsequently purged with ultrahigh purity (UHP) N₂ for 20 min at 400 sccm. The sample surface was subsequently exposed to Si₂H₆ and WF₆ with N₂ purges after each exposure for 30–100 s. Details for ALD on the three samples described in this work are given in Table 1. For sample VW, the W-deposited substrate was oxidized at 350 °C in flowing O₂ before being transported to a separate reactor for V ALD.

Catalyst coverage was measured by X-ray fluorescence (XRF) and comparison to calibrated Ba and As ion-implanted standards. X-ray photoelectron (XP) spectra were taken on a Thermo Scientific ESCALAB 250Xi instrument with a monochromated Al Kα beam (hν = 1.49 keV) and a pass energy of 20 eV. Despite the charge compensation via an electron beam and low-energy Ar⁺ beam, lateral differential charging effects resulted in tails in the low binding energy region of each peak in the XP spectrum. XPS peaks were therefore modeled using two Gaussian–Lorentzian peaks: one for the primary peak and a second to model the tail. These models were first fit for the fully oxidized peak, and the same ratio of peak maximum intensities, widths, and energy offsets was used to fit for multiple chemical states in the reduced condition.

The nanoscale surface morphology of the samples was recorded under ambient conditions using a Bruker ICON atomic force microscope (AFM) operated in tapping mode using Si cantilever tips. AFM artifacts were removed through image flattening as well as low-pass and/or Fourier filtering as implemented in Bruker NanoScope software.

XSW measurements at the α-Al₂O₃ (006) Bragg reflection were carried out at the 5-ID-C and 33-ID-D undulator beamlines at the Advanced Photon Source at Argonne National Laboratory. The incident X-ray beam energy was 13.00 keV for samples MW and VW and 7.00 keV for sample MV. Further details about the experiment and setup are described in the Supporting Information.

Slab-model DFT calculations were carried out using the VASP code with a plane-wave basis set with 400 eV cutoff energy. Exchange-correlation energies were obtained by the generalized gradient approximation (GGA) implemented in PW91 functionals using a projector augmented wave (PAW) method. k-point meshes were generated by the method of Monkhorst and Pack. The GGA approach provides sufficient accuracy for calculation of ground state charge distributions and relative surface energies. The clean 20-atom α-Al₂O₃ (0001) supercell used for all calculations is described in the Supporting Information.

Table 1. XRF-Determined Coverage of Atomic Layer Deposited V and W on the α-Al₂O₃ (0001) Single Crystals

<table>
<thead>
<tr>
<th>sample</th>
<th>MV</th>
<th>MW</th>
<th>VW</th>
</tr>
</thead>
<tbody>
<tr>
<td>no. of V cycles</td>
<td>16</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>V coverage (nm⁻²)</td>
<td>9.18 [0.91 ML]</td>
<td>9.06 [0.90 ML]</td>
<td></td>
</tr>
<tr>
<td>no. of W cycles and cycle details</td>
<td>4 (5 s, 1.2 Torr Si₂H₆, 5 s, 0.7 Torr WF₆)</td>
<td>5 (5 s, 1.25 Torr Si₂H₆, 5 s, 0.5 Torr WF₆)</td>
<td></td>
</tr>
<tr>
<td>W coverage (nm⁻²)</td>
<td>9.18 [0.92 ML]</td>
<td>7.77 [0.77 ML]</td>
<td></td>
</tr>
</tbody>
</table>

*ALD parameters for V deposition are given in the text, whereas ALD parameters varied for W deposition and are shown here. Coverage is reported in atoms nm⁻² as well as monolayers (ML) in brackets.

Figure 1. AFM topography images of (a) the clean α-Al₂O₃ (0001) single crystal surface and samples (b) MW, (c) MV, and (d) VW after redox cycling. Note that image (a) is shown at a larger scale than (b–d).
III. RESULTS AND DISCUSSION

A. Experimental. Three different near-monolayer (near-ML) catalyst coverages (detailed in Table 1) were deposited atop α-Al₂O₃ (0001) single crystals. For the α-Al₂O₃ (0001) single crystal surface, we define 1 ML as the coverage with all bulk-like surface cation positions filled (10.1 atoms nm⁻²). The clean α-Al₂O₃ (0001) crystal surfaces had <2 Å average root-mean-squared roughness, with ∼50–100 nm wide terraces separated by single- or few-step edges, as shown by atomic force microscopy (AFM) in Figure 1a. After ALD and subsequent redox cycling (described below), sample MW (Figure 1b) forms a very conformal film, while sample MV (Figure 1c) forms nanoparticles on the surface. These particles are believed to form through sintering during the first oxidation but do not appear to change in size or distribution after subsequent exposures to oxidizing or reducing environments. Analysis of AFM images reveal that the particles cover about 15% of the surface, and their volume fraction corresponds to the expected volume of ∼1 ML V₂O₅. The mixed V–W film (Figure 1d) shows a different morphology than either the V- or W-only samples, with two types of surface features: wide islands, about 1–2 nm high, and larger particles, up to 20 nm high (topographic heights in Figure 1c,d are truncated for clarity).

Ex situ X-ray photoelectron spectroscopy (XPS) shows nearly clean surfaces with traces of Na, K, and adventitious C. The presence of residual Si from W ALD cannot be ruled out, since trace Si 2s and 2p peaks might be overwhelmed by Al loss features from the substrate. Detailed scans of the O 1s–V 2p and W 4f spectra were conducted after exposures to oxidizing (OX, 350 °C in O₂) and reducing (RD, 400 °C in 5% H₂ bal N₂) conditions in a quartz tube furnace with a gas flow rate of 200 sccm. After each reaction step, the samples were cooled to room temperature in flowing gas and were subsequently transported in air to the XPS system, with air exposures limited to a few minutes. XPS results for the O 1s, V 2p, and W 4f peaks are shown in Figure 2. Fitted binding energies of V and W XPS peaks, along with the fractional composition of different chemical states of V and W, are given in Table 2. Binding energies are calibrated to the adventitious C 1s peak at 284.8 eV.

The oxidation state of V can be determined by measuring the binding energy (BE) of the V 2p XP doublet. However, on an insulating oxide substrate such as sapphire, O 1s is a convenient

Figure 2. (a, b) O 1s–V 2p XP spectra for samples (a) MV and (b) VW. Insets show fitted oxidation state-resolved spectra (dashed lines) for the V 2p₂/₃ peak. (c) W 4f spectra for samples MW and VW (offset for clarity). (d) Fitting of W 4f spectra for sample VW (offset for clarity).

Table 2. Fitted O 1s−V 2p₂/₃ Binding Energy Differences (in eV) and Fitted W 4f₇/₂ Binding Energies (and Fractions Thereof) for Samples after Oxidation (OX) and Reduction (RD)⁺

<table>
<thead>
<tr>
<th></th>
<th>MV</th>
<th>VW</th>
<th>MW</th>
</tr>
</thead>
<tbody>
<tr>
<td>W OX</td>
<td>35.77 (100%)</td>
<td>35.72 (100%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>35.93 (39%)</td>
<td>35.82 (100%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>35.48 (61%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V OX</td>
<td>13.13 (100%)</td>
<td>13.27 (100%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13.13 (63%)</td>
<td>13.32 (72%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>14.6 (37%)</td>
<td>14.54 (28%)</td>
<td></td>
</tr>
</tbody>
</table>

⁺W 4f₇/₂ binding energies are calibrated to the C 1s peak.
internal standard, so we consider the binding energy difference (BED) between the V 2p3/2 and O 1s peaks. Reported O 1s−V 2p3/2 BEDs for V5+, V4+, and V3+ are 12.8−12.9, 13.8−14.35, and 14.6−14.84 eV, respectively, from the O 1s peak at 530.1 eV in bulk vanadium oxides and on less strongly ionic oxide substrates. For the films studied herein, which are only a few angstroms thick, the bulk sapphire O 1s signal, with a BE of 531.6 eV, may dominate the O 1s spectrum. The O 1s−V 2p3/2 BEDs may therefore be somewhat larger than the values for bulk vanadium oxide. For V XPS, the V 2p3/2 and V 2p1/2 peaks do not necessarily have the same width and symmetry, and overlap between the O 1s and V 2p1/2 states further complicates fitting. Thus, for V binding energy determination, only the V 2p3/2 peak was fit. The V 2p1/2 contribution was modeled in the full O 1s−V 2p spectrum by a broad Gaussian−Lorentzian peak. Because of sample charging effects, the O 1s peak cannot be analyzed in detail.

After oxidation, the O 1s−V 2p3/2 BEDs are 13.1−13.3 eV, which is slightly larger than the expected value of 12.8−12.9 eV for V5+ in bulk V2O5. Considering that the Al2O3 O 1s peak is at a somewhat higher binding energy than that of vanadium oxides, these signals are assigned to V5+. In the reduced state, two-state fits reveal a significant fraction of V with a lower binding energy, centered at a BED value of 14.5−14.6 eV. Assuming the same BED shift from the expected bulk VOX values for V5+ (about 0.3−0.4 eV), we assign the reduced fraction to V4+.

The formal oxidation state of W can be determined by analyzing the W 4f doublet: the W 4f7/2 BEs for W6+, W5+, and W4+ are 35.5−35.6, 34.5−34.7, and 33.1−33.3 eV, respectively. No significant change is observed in the W 4f spectrum for sample MW, as shown in Figure S2a. However, the RD W 4f spectrum for sample VW, shown in Figure 2d, is best fit as two doublets offset by 0.45 eV from each other. The
separation between the higher-BE doublet (corresponding to W$^{6+}$) and the lower-BE doublet is much smaller than the expected 0.8–1.1 eV shift from W$^{6+}$ to W$^{5+}$. In each case, there is little change in the O 1s spectrum (Figure $S2b$).

The X-ray standing wave (XSW) technique was used to probe the interface structure of V and W on α-Al$_2$O$_3$ (0001) under oxidizing and reducing environments as described below. For a narrow angular range near an $H = hkl$ Bragg condition of a nearly perfect crystal, the Bragg reflectivity is nearly unity, and interference between the incident and reflected X-ray beams forms an XSW. As the angle between the incident X-ray beam and the crystal is increased through the reflection condition, the phase φ_H of the outgoing X-ray plane wave shifts by π, corresponding to a shift of the XSW toward the crystal surface by 1/2 the crystal plane spacing d_{hkl}. By simultaneously monitoring the X-ray Bragg reflectivity $R_H(\theta)$ from a single crystal and normalized XRF yield $Y_H(\theta)$ of a selected surface species (i.e., V or W) as the angle θ between the crystal and the incident beam is changed, the coherent fraction f_H and position P_H of that selected surface species with respect to the $H = hkl$ diffraction planes of the substrate may be determined from the equation

$$Y_H = 1 + R_H + 2\sqrt{R_H} \cos(\varphi_H - 2\pi P_H)$$

P_H ranges from 0 to 1, corresponding to the relative position within one d-spac ing (d_{hkl}). The statistically averaged position of surface atoms may therefore be measured with very high precision. f_H also ranges from 0 to 1, with 1 corresponding to complete coherency with the substrate lattice and 0 corresponding to either a “random” distribution relative to the substrate primitive unit cell or a special case such as two equally occupied positions separated by $1/2d_{hkl}$.

XSW measurements were performed after treatments at 350 °C for 30 min in 200 sccm flowing O$_2$ (OX), 400 °C for 30 min in 200 sccm flowing 3% H$_2$ bal He (RD), and reoxidizing at the same conditions as OX (OX2). The reaction gas was kept flowing through the sample chamber at room temperature during in situ XSW measurements. XSW data from the α-Al$_2$O$_3$ (006) reflection are compiled in Figure 3, including measurements for the “as deposited” (AD) cases prior to redox treatments. The shifts in the symmetry of the V $K\alpha$ fluorescence yield relative to the reflectivity curve indicate changes in the fraction of V occupying sites that are correlated with the substrate lattice. Conversely, the absence of such shifts in W $L\beta_1$ XRF yields indicate no significant changes in the position of W relative to the substrate lattice.

The XSW-derived coherent fractions and positions (f_{006}, P_{006}) are given in Table 3, where the averages of OX and OX2 results are shown as “oxidized” and the RD results are shown as “reduced”. Coherent positions are reported relative to the average bulk Al cation position as a fraction of the α-Al$_2$O$_3$ (006) d-spacing of 2.166 Å; for reference, P_{006} of bulk Al and O atoms are ±0.115 and 0.5, respectively. For values of f below 0.1, systematic errors make the value of P less reliable; some results for P have been omitted accordingly.

B. Computational.

Density functional theory (DFT) calculations were performed for $1/2$ ML W, $1/2$ ML V, and $1/2$ ML V atop $1/2$ ML W on a monoclinic Al-terminated α-Al$_2$O$_3$ (0001) surface supercell (lattice parameters: $a = b = 4.784$ Å, $c = 25$ Å) shown in Figure S3 of the Supporting Information. Surface cations were terminated with three O atoms per surface unit cell and were allowed to relax with different initial surface cation arrangements. Reduction by H$_2$ was modeled as a stoichiometric series of 0, 1, 2, or 3 H atoms atop the O-terminated surfaces. The relative stabilities of these models were determined by surface energy analysis as shown in Figure 4a. Relative surface energies were calculated by subtracting the contribution of each H atom (one-half the total energy of an H$_2$ molecule) from the total energy of each relaxed supercell and then referencing these values to the lowest energy structure for each cation stoichiometry. By comparing relative surface energies for incremental addition of H to the O-terminated surfaces for each cation stoichiometry, stable structures under reducing conditions are proposed; these are shown in Figure 4b–d. W alone on the sapphire surface is by far the most stable when fully O-terminated with no additional adsorbed H. For V alone, the case with 1 dissociatively adsorbed H$_2$ molecule per surface cell is most stable. For the VW stoichiometry, both 1 and 1.5 H$_2$ molecules per surface cell are roughly costable. However, the doubly H-terminated structure is more consistent with XSW and spectroscopic data, as discussed below.

Structural and chemical details of the structures shown in Figure 4 are given in Table 4. Calculated cation positions P_{006} from each structure (provided in Table 3) can be compared directly with XSW-measured coherent positions. The calculations match very well with the experimental values for MW and the reduced cases of MV and VW, aside from an overstretching of V into the vacuum for the mixed V–W calculation. Cation charges calculated by the method of Bader are roughly one-half of the expected formal charge, indicating a mixed covalent-ionic character. Bond valence sums (BVS) give a theoretical estimate of the cation valence and were calculated using parameters for V–O$^{5+}$ and W–O$^{5+}$ coordination environments. BVS show values close to those expected for W$^{6+}$ and V$^{4+}$ in the W- and V-only cases, respectively. In the mixed V–W case, V is oxidized by 0.10 e versus the V-only case, whereas W undergoes a significant reduction of 0.33 e from the W-only case.

Atom-projected partial densities of states (PDOS) for the surface species of these models are shown in Figure 5; densities of states for the complete slab are shown in Figure S4 of the Supporting Information. PDOS analysis reveals that, as expected, the fully oxidized and very stable W$^{6+}$ surface (Figure 5a) has a broad valence band corresponding to covalent O 2p–W 5d interactions. The partially hydroxylated V$^{4+}$ structure (Figure 5b) also shows a broad valence band, with a hydroxyl

Table 3. XSW-Derived Coherent Fractions (f) and Coherent Positions (P) for the (006) Crystal Reflection of α-Al$_2$O$_3$, with Error Values on the Last Reported Digit Given in Parentheses, and Simulated XSW Results for P_{006} Derived from DFT Calculations of the Reduced-State Structures

<table>
<thead>
<tr>
<th></th>
<th>MV</th>
<th>MW</th>
<th>VW</th>
</tr>
</thead>
<tbody>
<tr>
<td>reduced</td>
<td>0.23(3)</td>
<td>0.21(3)</td>
<td></td>
</tr>
<tr>
<td>$P_{006}(V)$</td>
<td>0.11(2)</td>
<td>0.23(1)</td>
<td></td>
</tr>
<tr>
<td>oxidized</td>
<td>0.42(2)</td>
<td>0.46(2)</td>
<td></td>
</tr>
<tr>
<td>$P_{006}(W)$</td>
<td>0.19(1)</td>
<td>0.19(1)</td>
<td></td>
</tr>
<tr>
<td>DFT (reduced)</td>
<td>0.10(5)</td>
<td>0.09(3)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>MV</th>
<th>MW</th>
<th>VW</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P_{006}(V)$</td>
<td>0.11(1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$P_{006}(W)$</td>
<td>0.39(6)</td>
<td>0.47(7)</td>
<td></td>
</tr>
<tr>
<td>$P_{006}(W)$</td>
<td>0.20(2)</td>
<td>0.17(2)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>MV</th>
<th>MW</th>
<th>VW</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P_{006}(W)$</td>
<td>0.125</td>
<td>0.278</td>
<td></td>
</tr>
<tr>
<td>$P_{006}(V)$</td>
<td>0.202</td>
<td>0.186</td>
<td></td>
</tr>
</tbody>
</table>
feature at its deep end. However, sharp V d-states (hybridized with the O 2p orbitals of the surface ligands) are present at and just above the Fermi energy E_F. Combining these cation terminations, the reduced V$^{4+}$/W$^{6+}$ case (Figure 5c,d) shows d-states around E_F for both W and V. As shown in the band-projected charge density map for the d-states near E_F (Figure 5d), the cations are separated by 3.31 Å, and therefore these features are not due to cation orbital overlap. No vacant states further above E_F appeared in our calculations.

IV. DISCUSSION

In the oxidized condition, XPS shows that V and W are fully oxidized (V$^{5+}$, W$^{6+}$). Upon treatment in a dilute H$_2$ atmosphere, 37% of V$^{5+}$ on sample MV and 28% of V$^{5+}$ on sample VW reduce to V$^{4+}$. W 4f XP spectra reveal no W reduction for sample MW, which is corroborated by DFT calculations that show a sharp increase in surface energy upon H addition to fully O-terminated W/α-Al$_2$O$_3$ (0001) (see Figure 4a). However, sample VW shows a shift of the W 4f doublet toward lower binding energy. Since the shift is too small to correspond to a reduction to W$^{5+}$, this subtle charge screening effect suggests a collective partial reduction of 60% of the W$^{6+}$ to W$^{6−δ}$.

Table 4. Local Cation Coordination Environment, Bader Charges (q_B), and Bond Valence Sums (BVS) for Low-Energy Structures atop the Al-Terminated α-Al$_2$O$_3$ (0001) Surface Supercell, Denoted as Sa

<table>
<thead>
<tr>
<th></th>
<th>S−W−O$_3$</th>
<th>S−W−O$_3$−V−O(OH)$_2$</th>
<th>S−V−O(OH)$_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>W−O</td>
<td>1.78, 1.78, 1.78</td>
<td>1.81, 1.82, 1.83, 2.10,</td>
<td>2.10, 2.10</td>
</tr>
<tr>
<td>coordination</td>
<td>(Å)</td>
<td>2.17</td>
<td>2.17</td>
</tr>
<tr>
<td>q_B(W) (e)</td>
<td>2.89</td>
<td>2.85</td>
<td></td>
</tr>
<tr>
<td>BVS(W) (e)</td>
<td>5.71</td>
<td>5.38</td>
<td></td>
</tr>
<tr>
<td>V−O</td>
<td>1.60, 1.79, 1.80, 2.25,</td>
<td>1.67, 1.87, 1.93,</td>
<td>1.97, 1.99,</td>
</tr>
<tr>
<td>coordination</td>
<td>(Å)</td>
<td>2.30, 2.39</td>
<td>2.16</td>
</tr>
<tr>
<td>q_B(V) (e)</td>
<td>2.16</td>
<td>2.12</td>
<td></td>
</tr>
<tr>
<td>BVS(V) (e)</td>
<td>4.34</td>
<td>4.24</td>
<td></td>
</tr>
</tbody>
</table>

$^a q_B$ and BVS values are given in units of elementary charge e.
XSW results show a clear difference between the behavior of W and V on the α-Al2O3 (0001) surface. For samples MW and VW, there is no significant change in the position of correlated W between the OX and RD states and no effect of codeposited V. In the OX state for samples MV and VW, the V coherent fraction ($f_{006} \sim 0.1$) is too small to accurately measure any coherent position of V. Upon reduction, the coherent fraction of V increases substantially. The amount of correlated V in the RD state is similar to the fraction determined by XPS to reduce to V^4+, suggesting a partial transition from uncorrelated V^5+ to correlated V^4+. We have observed similar phenomena for >1 ML VOx on α-TiO2 (110), which undergoes a redox-reversible structural transition from uncorrelated V2O5 to VO2 which is epitaxial (correlated) to the rutile substrate lattice.16,33 As the coherent fraction of sample MV (corresponding to ~0.2 ML V) exceeds the areal fraction of the interface between the nanoparticles and the surface (15%), we conclude that reduction causes V^4+ to spread out over the sapphire surface, perhaps as dispersed species or as regions of an ultrathin (oxyhydr)oxide film that cannot be detected by AFM in ambient conditions.

The coherent position of reduced V is significantly different on the V-only MV sample versus the codeposited VW sample, indicating that the geometry of coherent V is modified by VOx. The DFT-calculated coherent position of V (0.278) in the mixed V–W case is substantially further from the surface than the XSW-measured value (0.23). The measured value lies between the calculated positions for the mixed V–W structure and the V-only case (0.125) and could therefore be interpreted as a superposition of two coherent populations of V. A surface with 33% and 67% of the coherent V in the calculated V/α-Al2O3 (0001) and V/W/α-Al2O3 (0001) structures, respectively, would be measured as a $P_{006}(V)$ value of 0.23. The measured coherent fraction would be 90% of the actual sum of the two coherent populations of V. The corresponding actual fractions of coherent V would be about 0.08 (0.07 ML) of the V/α-Al2O3 structure and 0.16 (0.14 ML) of the V/W/α-Al2O3 structure. Aside from these small losses in the coherent fraction due to multiple coherent populations, the noncorrelated fraction of W and V is structurally “invisible” to the XSW measurement and exists in an incoherent phase, likely in the nanoparticles on the surface.16

The agreement between experimental and theoretical results in both structure (validated by XSW) and electronic states (probed by XPS) constitutes a strong argument for the partial reduction of W^6+. DFT calculations for W/α-Al2O3 (0001) in the absence and presence of V reveal that (a) protonation of oxidized W/α-Al2O3 (0001) is stable, whereas protonation of oxidized W/α-Al2O3 (0001) is not, and (b) upon protonation of oxygen ligands in the V coordination environment, negative charge is spontaneously transferred to W. From our PDOS calculations, W d-states appearing near E_F in Figure 5 correspond to those involved in the W6+(0-5) model of Bronsted acidity,3,4 suggesting that the formation of Bronsted acid sites might be facilitated via coreduction of W with V. Bond valence analysis of the 1/2 ML V / 1/2 ML W structure shows a reduction of W by 0.33 e relative to the fully oxidized 1/2 ML W^6+ case, further corroborating this assignment of W6+(0-5). The shift in W Bader charge is much smaller than the bond valence shift, suggesting that W reduction is due to the redistribution of covalently shared charge more than ionic charge transfer. While our ground-state DFT models cannot provide a dynamic mechanism for reduction and charge transfer, the degeneracy of V and W states indicates that no perturbation is needed to facilitate charge transfer between the two cations—a “zero-cost transfer” of electronic charge from easily reducible V to less reducible W occurs upon reduction of the catalyst surface.

This work expands upon a detailed survey of model catalyst behavior on several different single crystal oxide support materials. Previously, we found that sub-ML^7 and ML^16 WOX supported on rutile α-TiO2 (110) (which shares stoichiometry with the anatase used in industry as a support for V–W catalysts) did not reduce from W^6+ under similar reducing conditions as reported here. However, the addition of V enables the reduction of W^6+ to W^5+ and W^4+ on α-TiO2 (110).16 Sub-ML W^6+ has also been shown to reduce to W^5+ on the α-Fe3O4 (0001) surface under similar conditions.44,52 While α-Fe3O4 has nearly the same crystal structure as α-Al2O3, it is reducible, with a more complex electronic structure, and is therefore less chemically “inert” overall.

The V–W coreduction reported in the present work occurs in relative chemical isolation on the α-Al2O3 (0001) surface, which provides a structural template but is not likely a significant source or sink of electrons or H^+; that is, the reduction of W^6+ can be attributed mostly to the contribution of V. We acknowledge that the morphologies of these well-controlled model catalysts on single crystal surfaces may not resemble real oxide-supported catalyst particles. However, these conditions are necessary to observe the chemical interaction of low-coverage V and W species independent of the high concentration of potentially reactive surface defects present on real catalyst supports.

V. CONCLUSIONS

Structural, spectroscopic, and computational analysis of V and W oxides deposited by ALD onto the α-Al2O3 (0001) single crystal surface provides an explanation of the synergy observed in mixed V–W catalysts for reactions such as the selective catalytic reduction of nitric oxides. XSW and XPS reveal a redox-reversible atomic-scale transition from V^5+ which is uncorrelated to the substrate lattice to an ordered V^4+ phase. Meanwhile, W^6+ is shown to partially reduce in the presence of V^4+, but not when deposited alone on α-Al2O3 (0001). DFT-calculated results for surface atomic and electronic structures are verified by comparison with XSW atomic positions and oxidation states derived from XPS.

Taking together results from various single crystal surface geometries and chemistries, we conclude that W^6+ reduction is facilitated by coreductants such as V^5+ or Fe^3+. Electronic structure analysis of these reduced W species suggests that the presence and properties of localized W d-states near the Fermi energy may be a useful parameter for the targeted design of Bronsted acid sites in mixed oxide catalysts, a step forward in the d-band engineering of multicomponent catalysts.53,54

ASSOCIATED CONTENT

Supporting Information

XSW experimental details, W 4f spectra from sample MW and O 1s spectra from samples MW and VW, details of the slab model used for DFT calculations, and additional densities of states. The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jpcc.5b04802.
Reduction.

Ciraldo from Rubicon Technologies, Inc., for providing
Northwestern University. We are grateful to Dr. D.T. Keane
MRSEC, the Keck Foundation, the State of Illinois, and
funded by the U.S. DOE O
Transformations (IACT), an Energy Frontier Research Center
and WO3/Al2O3 and Characterization by Temperature-Programmed
REFERENCES

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

M.E.M. and T.L.D. were supported by National Science
Foundation Graduate Research Fellowships under Grants
DGE-0824162 and DGE-1324585, respectively. M.E.M.,
T.L.D., P.C.S., D.E.E., and M.J.B. were supported in part by
the Institute for Catalysis in Energy Processes (U.S. Depart-
ment of Energy (DOE) under Contract DE-FG02-03ER15457). G.P.C. was supported by the Northwestern
University MRSEC (NSF Award DMR-1121262). J.W.E. was
supported by the Institute for Atom-efficient Chemical
Transformations (IACT), an Energy Frontier Research Center
funded by the U.S. DOE Office of Basic Energy Sciences.
Additional support was provided by the Initiative for
Sustainability and Energy at Northwestern University.
Synchrotron X-ray measurements were performed at the
Argonne National Laboratory (ANL) Advanced Photon
Source, Sector 33 and Sector 5 (DND-CAT), which is
supported by E. I. du Pont de Nemours & Co., Northwestern
University, The Dow Chemical Co., the State of Illinois
supported by E. I. du Pont de Nemours & Co., Northwestern
University, The Dow Chemical Co., the State of Illinois
through the Department of Commerce and the Board of
Education (HECA), and the Northwestern University MRSEC.
ANL is supported by the U.S. DOE under Contract DE-AC02-
06CH11357. AFM and XPS were performed at the NIFTI and
Keck-II facilities of NUANCE Center at Northwestern
University. Synchrotron X-ray measurements were performed at the
Argonne National Laboratory (ANL) Advanced Photon
Source, Sector 33 and Sector 5 (DND-CAT), which is
supported by E. I. du Pont de Nemours & Co., Northwestern
University, the State of Illinois and Northwestern University.
We are grateful to Dr. D.T. Keane and Dr. Z. Zhang for assistance at the APS and to Dr. John
Cirilfo from Rubicon Technologies, Inc., for providing
sapphire substrates.

REFERENCES

(1) Soled, S. L.; McVicker, G. B.; Murrell, L. L.; Sherman, L. G.;
Dispensiere, N. C., Jr.; Hsu, S. L.; Waldman, D. Comparison of the
(2) Kudla, R. J.; Subramanian, S.; Chattha, M. S.; Hoost, T. E. Effect of
Tungsten Oxide Addition on the Catalytic Activity of γ-Al2O3 for NOx
(3) Barton, D. G.; Soled, S. L.; Iglesia, E. Solid Acid Catalysts Based on
(4) Baertsch, C. D.; Komala, K. T.; Chua, Y.-H.; Iglesia, E. Genesis of
Bromsted Acid Sites during Dehydration of 2-Butanol on Tungsten
Hercules, D. M. Surface Spectroscopic Study of Tungsten-Alumina
Catalysts Using X-Ray Photoelectron, Ion Scattering, and Raman
and WOx/Al2O3 and Characterization by Temperature-Programmed
(7) Kim, C.-Y.; Elam, J. W.; Pellin, M. J.; Goswami, D. K.;
Christensen, S. T.; Hersam, M. C.; Stair, P. C.; Bedzyk, M. J. Imaging
of Atomic Layer Deposited (ALD) Tungsten Monolayers on α-
Reduction Behavior of W/TiO2 Catalysts by XPS Using Curve
1995, 23, 204–212.
(9) Broclawik, E.; Göra, A.; Najbar, M. The Role of Tungsten in
Formation of Active Sites for NO SCR on the V-W-O Catalyst Surface
166, 31–38.
(10) Busca, G.; Lietti, L.; Ramis, G.; Berti, F. Chemical and
Mechanistic Aspects of the Selective Catalytic Reduction of NOx by
36.
(11) Kompio, P. G. W. A.; Brückner, A.; Hipler, F.; Auer, G.; Löfler,
E.; Grünert, W. A New View on the Relations between Tungsten and
Chen, Y. Promotion Effect of Tungsten Oxide on SCR of NO with
38.
(13) Bertinchamps, F.; Grégoire, C.; Gaigneaux, E. M. Systematic
Investigation of Supported Transition Metal Oxide Based Formulations
Vogel, H.; Fuess, H. Characterization of V-W and Mo-W Mixed Oxide
Catalysts for the Selective Oxidation of Acreolein to Acrylic Acid. Z.
Phys. Chem. 2007, 221, 1525.
(15) Topsoe, N.-Y. Mechanism of the Selective Catalytic Reduction of
(16) Feng, Z.; McBrierty, M. E.; Mane, A. U.; Lu, J.; Stair, P. C.;
Elam, J. W.; Bedzyk, M. J. Redox-Driven Atomic-Scale Changes in
64608–64616.
Ren, G. Effects of Sulfur Substrate Annealing on ZrO2 Epitaxial
(18) Elam, J. W.; Groner, M. D.; George, S. M. Viscous Flow Reactor
with Quartz Crystal Microbalance for Thin Film Growth by Atomic
(19) Badot, J. C.; Ribes, S.; Yousfi, E. B.; Vivier, V.; Pereira-Ramos, J.
P.; Baffier, N.; Linicot, D. Atomic Layer Epitaxy of Vanadium Oxide
Thin Films and Electrochemical Behavior in Presence of Lithium Ions.
(20) Elam, J. W.; Nelson, C. E.; Grubbs, R. K.; George, S. M.
Nucleation and Growth During Tungsten Atomic Layer Deposition on
(21) Tielsch, B. J.; Fulghum, J. E. Differential Charging in XPS. Part I:
Demonstration of Lateral Charging in a Bulk Insulator Using Imaging
(22) Kresse, G.; Hafner, J. Ab Initio Molecular Dynamics for Liquid
(23) Kresse, G.; Hafner, J. Ab Initio Molecular-Dynamics Simulation of
the Liquid-Metal–Amorphous-Semiconductor Transition in
(24) Kresse, G.; Furthmüller, J. Efficient Iterative Schemes for Ab
(25) Kresse, G.; Furthmüller, J. Efficiency of Ab-Initio Total Energy
Calculations for Metals and Semiconductors Using a Plane-Wave Basis
(26) Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.;
Pederson, M. R.; Singh, D. J.; Fiolhais, C. Atoms, Molecules, Solids,