Investigation of Glutaric Anhydride as an Electrolyte Additive for Graphite/LiNi_{0.5}Mn_{0.3}Co_{0.2}O_{2} Full Cells

Cameron Peebles,a Meinan He,b,c Zhenxing Feng,c Chi-Cheung Su,a,d Li Zeng,e Michael J. Bedzyk,e,f,g Paul Fenter,a,d Yan Wang,b Zhengcheng Zhang,a and Chen Liao,a,d,h

aChemical Science and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
bMechanical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, USA
cSchool of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon 97331, USA
dJoint Center for Energy Storage Research (JCESR), Argonne National Laboratory, Argonne, Illinois 60439, USA
eApplied Physics Program, Northwestern University, Evanston, Illinois 60208, USA
fDepartment of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA
gDepartment of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, USA

The effects of glutaric anhydride (GA) as an electrolyte additive for graphite/LiNi_{0.5}Mn_{0.3}Co_{0.2}O_{2} full cells operating between 3.0–4.4 V were investigated. Linear scan voltammetry (LSV) revealed that GA preferentially oxidized prior to the carbonate-based electrolyte while Li/graphite half cells revealed that GA can suppress electrolyte decomposition on the graphite electrode giving rise to the bifunctional nature of this additive. The addition of both 0.5 and 1.0 wt% of GA into the carbonate-based electrolyte resulted in superior cycling performance compared to the baseline electrolyte as demonstrated by the slight increase in initial capacities and significant increases in capacity retention over 117 cycles at C/3. Electrochemical impedance spectroscopy (EIS) showed that while the overall impedance of the GA containing cells was higher than the cells with the baseline electrolyte the change in impedance between post-formation and post-cycling was smallest for the cells containing GA. Additionally, X-ray photoelectron spectroscopy (XPS) analysis confirmed that GA decomposed on the cathode surface leading to an increase in oxygen-containing species, a decrease in LiF species and a simultaneous increase in Li_{2}PO_{4}F_{2} species.

© 2016 The Electrochemical Society. [DOI: 10.1149/2.0721702jes] All rights reserved.

Lithium ion batteries (LIBs) have demonstrated excellent promise and are the top candidates for powering electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs). To obtain the necessary high energy and power densities over numerous charge and discharge cycles that these automobiles will require, new cathode materials are continuously being investigated. Compared to tradition LiMnO_{2} and LiCoO_{2} cathode materials, Ni-based layered LiNi_{x}Mn_{1-x}O_{2} (NMC, where x + y + z = 1) materials have attracted much attention due to their high capacity, low cost and attractive electrochemical performance.1–4 While Ni-rich NMC materials display higher capacities at the expense of lower safety (lower thermal stability), Co- and Mn-rich materials show higher safety characteristics but lower capacities.3 Although these cathode materials are attractive from a high capacity standpoint, the required charge voltages (>4.4 V vs. Li/Li+) to attain this high capacity results in several inherent issues leading to poor electrochemical performance.5,6,7 Explanations for the observed poor performance of these materials at high voltages include 1) structural changes from layered to spinel upon cycling,1,2 2) Mn- and Ni-dissolution giving rise to surface side reactions at the graphite anode22 and 3) oxidative instability of conventional carbonate-based electrolytes beyond 4.4 V (vs Li/Li+).8–11 Numerous strategies have been adapted to overcome continual electrolyte decomposition at the cathode under high voltage operating conditions. Protection of the cathode surface using inorganic oxide coatings (SiO_{2}, Al_{2}O_{3}, TiO_{2}, etc.) and organic polymer coatings (PEDOT)10 have been successful but require a cathode pretreatment. Additionally, the use of intrinsically stable high voltage electrolyte solutions1,11 as well as electrolyte additives for electrode-electrolyte interphase stabilization3,12–17 have been well explored. Of the previously mentioned strategies, electrolyte additives provide a more economical approach to preventing electrolyte oxidative decomposition. While many additives are able to form a solid-electrolyte interphase (SEI) on carbon-based anodes (such as graphite), relatively fewer additives display the ability to form a protective film on the surface of the cathode. This issue will become more prevalent as high voltage cathode materials emerge necessitating solvents with higher electrochemical stabilities.

Anhydrides have found recent success as electrolyte additives for both passivation on carbonaceous anodes and high voltage cathodes. The use of glutaric anhydride (GA) was shown to increase the formation of a homogenous fluorophosphates-containing interphase and subsequently lower the formation of LiF (a highly resistive species) when used as an additive for LiNi_{0.4}Mn_{1.6}O_{4} (LNMO) surfaces.18 In another study, Li/LNMO half cells containing succinic anhydride (SA) were cycled up to a cutoff voltage of 4.95 V and displayed reduced capacity loss, the formation of a thinner, more stable SEI, and an improved Coulombic efficiency.19 During cycling at high voltage (~4.9 V) for Li/LiNi_{0.5}Mn_{0.5}O_{2} half cells, SA (3 wt%) used as an additive resulted in the formation of a compact, stable layer on the surface of the LNMO cathode improving the interphase stability at high voltages.20 Recent work by Guyomard et al.21 showed an improvement in Li_{2}Ti_{2}O_{5}/LNMO full cell cycling performance between 1.5–3.5 V (equivalent to 3.05–5.05 V vs Li/Li+) when GA (2 wt%) was used as an additive. Using XPS analysis they explored the impact of GA on the electrode/electrolyte interface and found that GA forms a passivation film mainly composed of organic compounds (mainly O=C-O containing species) on the LNMO surface.

On the negative anode, additives are crucial in formation of an SEI capable of reducing electrolyte decomposition during the cell cycling. Lithium bis(oxalato)borate (LiBOM) and lithium difluoro(oxalato)borate (LiDFOB) have found continued success as SEI-forming additives due to their high ionic conductivity and their ability to form protective SEI layers on the graphite surface. The previously mentioned SA has also been shown to form a stable SEI on graphite anodes during the first graphite intercalation process.22 Additives that are capable of passivating the negative electrode while forming a beneficial protective layer on the cathode surface are uncommon but of great interest. Bifunctional additives such as these reduce the need for binary additive solutions and thus reduce the complexity of the electrolyte mixture.

In this work we demonstrate that glutaric anhydride (GA) can be effectively used as an electrolyte additive (in as little as 0.5 wt%) in graphite/NMC532 full cells operating between 3.0–4.4 V. The NMC532 composition was selected as it displays a good balance between thermal stability and high capacity. The additive was shown to suppress electrolyte decomposition on the graphite negative electrode and also displayed a propensity to be oxidized prior to the baseline electrolyte on the NMC positive cathode. After 117 cycles the capacity retention for cells containing GA was higher than for the baseline...
To investigate the surface composition of the cycled electrodes and electrolyte the cells were disassembled in an Argon glove box after cycling. The electrodes and separator were first rinsed in CDC13 (Sigma Aldrich, 99.96 atom %, anhydrous) to study the cycled electrolyte and then rinsed with DMC (Sigma Aldrich, >99%, anhydrous) twice and dried overnight in an inert atmosphere. Scanning electron microscopy (SEM) using a Hitachi S-4700-II microscope in the Electron Microscopy Center of Argonne National Laboratory was employed to observe changes to the bulk morphology of the electrodes before and after cycling. X-ray photoelectron spectroscopy (XPS) spectra were collected at the Keck II facility of NUANCE at Northwestern University with Thermo Scientific ESCALAB 250Xl using monochromated Al Kα X-Rays. A low-energy electron flood gun was used to compensate the XPS-induced surface charging effects. The C1s peak at 284.8 eV was used as the reference to calibrate the XPS spectra. Nuclear magnetic resonance (NMR) of the CDC13 rinsing solutions were obtained using a Bruker Avance III HD 300 MHz spectrometer. 1H NMR spectra were taken and the chemical shifts are given in parts per million (ppm) relative to a tetramethylsilane standard.

Results and Discussion

Linear scan voltammetry and Li/graphite half cell measurements.—To investigate the anodic stability of GA, linear sweep voltammetry was performed on a Pt working electrode at a scan rate of 10 mVs at room temperature. The baseline electrolyte displays an increase in oxidation current at ~6.3 V (vs Li/Li+) indicating substantial electrolyte decomposition (Figure S1 in the Supporting Information shows the baseline electrolyte oxidation peak using a different scale). When 1.0 wt% of GA was added to the solution the oxidation current initially increased between 4.0–6.0 V at which point it drastically increased beyond ~6.0 V. These results demonstrate that GA preferentially oxidizes prior to the baseline electrolyte on the cathode and may possibly suppress electrolyte oxidation reactions at the cathode-electrolyte interphase.

Interestingly, the cathodic stability of GA is less than that of the baseline electrolyte and shows a reduction peak maximum at ~2.2 V (vs Li/Li+) as shown in Figure 2b. On the contrary, the baseline electrolyte shows a sharp decrease in reduction current at ~0.5 V indicative of electrolyte decomposition. The differential capacity plots of first graphite-lithiation cycle for Li/graphite cells containing the baseline electrolyte and with and without 1.0 wt% GA are shown in Figure 2c. During the first lithiation the baseline electrolyte shows a peak beginning at ~0.7 V (vs Li/Li+) (electrolyte reduction) while the cell containing GA shows a peak beginning at ~1.1 V. The discrepancy between the reduction potential of GA in Figures 2b and 2c originates from the different working electrodes: in Figure 2b, Pt was used as the working electrode and the measurement was carried out in a beaker cell; while in Figure 2c, graphite was used as the working electrode and the measurement was carried out in a Li/graphite half cell. Neither of these peaks were observed during the second lithiation cycle and therefore are associated with the initial formation of the SEI on the graphite anode. The absence of the lower voltage (~0.7 V) peak for the cell containing GA (in Figure 2c) indicates that GA can suppress electrolyte reduction on the graphite anode and act as a graphite passivating agent. These results are corroborated by looking at the 1st charge cycle differential capacity plots for graphite/NMC532 full cells with and without GA in the electrolyte (Figure 2d). The baseline electrolyte shows a peak maximum at 3.2 V corresponds to electrolyte reduction on the graphite anode. The cell containing GA shows two stronger peaks at 1.9 and 2.75 V and a small shoulder peak at 3.2 V further suggesting that GA can suppress reduction of the electrolyte on the graphite anode. This is further corroborated by Figure S2 in the Supporting Information which shows that GA can suppress PC solvent co-intercalation into graphite. Put together, the LSV and Li/graphite half-cell results demonstrate that GA is able to both preferentially oxidize prior to the baseline electrolyte on the cathode electrode and also passivate the graphite anode and suppress electrolyte reduction.

Table I. Composition of cell components.

<table>
<thead>
<tr>
<th>Positive Electrode</th>
<th>Negative Electrode</th>
</tr>
</thead>
<tbody>
<tr>
<td>90 wt% NMC532 (Toda)</td>
<td>91.8 wt% A12 graphite (Phillips 66 CPreme)</td>
</tr>
<tr>
<td>5 wt% PVDF binder (Solvay 5130)</td>
<td>6 wt% PVDF binder (Kureha 9300)</td>
</tr>
<tr>
<td>5 wt% C45 (Timcal)</td>
<td>2 wt% C45 (Timcal)</td>
</tr>
<tr>
<td>9.17 mg/cm² active-materal loading density</td>
<td>0.17 wt% Oxalic Acid</td>
</tr>
<tr>
<td>34 µm thick coating</td>
<td>5.88 mg/cm² active-materal loading density</td>
</tr>
<tr>
<td>20 µm Al current collector</td>
<td>44 µm thick coating</td>
</tr>
<tr>
<td>33.5% porosity</td>
<td>10 µm Cu current collector</td>
</tr>
<tr>
<td>Electrolyte</td>
<td>38.4% porosity</td>
</tr>
<tr>
<td>1.2 M LiPF6 in EC/EMC (3:7 w/w) with 1.0 or 0.5 wt% Glutaric Anhydride (Sigma Aldrich, 95% purity)</td>
<td>25 µm thick (Celgard 2325, PP/PE/PP)</td>
</tr>
</tbody>
</table>

Figure 1. Structure of glutaric anhydride (GA).
Figure 2. Linear sweep voltammetry of baseline electrolyte with and without 1.0 wt% GA showing (a) anodic stability and (b) cathodic stability; (c) differential capacity plot of Li/graphite half-cell at a C/10 rate; (d) differential capacity plot of graphite/NMC532 full cells showing 1st charge cycle.

Electrochemical cycling and impedance measurements.—Figure 3 shows the cycling performance, Coulombic efficiency and voltage profiles of graphite/NMC532 full cells with and without GA as an additive operating between 3.0–4.4 V. The presence of GA as additive in either 1.0 or 0.5 wt% significantly improved the cycling stability of full cells. For the baseline electrolyte without GA the initial charge and discharge capacities are 221.8 and 192.4 mAh/g, respectively, which correspond to a Coulombic efficiency of 86.8%. For the cells containing 1.0 and 0.5 wt% GA the initial charge and discharge capacities are 223.7 and 195.6 and 222.3 and 194.2 mAh/g, respectively. The resulting first cycle Coulombic efficiencies for 1.0 and 0.5 wt% GA both are 87.4%, slightly higher than the baseline electrolyte. After 117 cycles at C/3 rate, the discharge capacities and Coulombic efficiencies for the baseline electrolyte, 1.0 and 0.5 wt% GA are 167.4 mAh/g and 99.82%, 178.0 mAh/g and 99.89% and 177.7 mAh/g and 99.86%, respectively. These final discharge capacities correspond to capacity retentions of 90.3, 94.8 and 95.2 for the baseline electrolyte, 1.0 and 0.5 wt% GA containing cells, respectively.

Electrochemical impedance spectroscopy (EIS) of the graphite/NMC full cells with and without GA as an additive was conducted to investigate the interfacial impedance of the cathode surface layer. The impedance was measured at a ∼50% state of charge (3.75 V). Three features are evident in the EIS spectra: 1) a high-frequency arc arising from Li⁺ migration through the SEI film at the positive electrode (R_{SEI}), 2) a mid-frequency arc arising from contributions from both electrodes and associated with charge transport across electrode-electrolyte interface (R_{CT}) and 3) a Warburg tail arising from bulk Li⁺ diffusion in the electrolyte and the solid phase of electrodes (W_{C}). The initial impedance is denoted as R_{initial}. Figure 4 presents the EIS data for the cells after three C/10 formation cycles and then after 117 charge-discharge cycles at a C/3 rate. Values for the impedance data are in Table II. EIS resistances were estimated by fitting the impedance spectra using the equivalent circuits shown in the figure. Before cycling the high-frequency arc for all cells are similar while the mid-frequency arc decreases in the order 1.0 wt% GA > 0.5 wt% GA > baseline electrolyte. This indicates that increasing the amount of GA in the cell increases the charge transfer resistances at the cathode electrode-electrolyte interface at least after formation cycling. In other words, the oxidized species of GA formed on the surface of the cathode may be composed of more resistive layers compared to the oxidized electrolyte species. After cycling at a C/3 rate for 117 cycles the mid-frequency charge-transfer resistances of all the cells increased in the order 1.0 wt% GA > 0.5 wt% GA > baseline electrolyte. The initial SEI and the high-frequency arc increased for all cells as well. The overall difference in the R_{CT} (ΔR_{CT}) and R_{SEI} (ΔR_{SEI}) after-formation and after-cycling showed the same trends with the change in the 1.0 wt% GA being the smallest followed by 0.5 wt% GA with the greatest difference occurring in the baseline cell. The change in ΔR_{CT} and ΔR_{SEI} help indicate the extent of resistive surface film formed between the initial “formation” cycles and the final aging cycles. Interestingly, although the initial R_{CT} increased with an increasing wt% of GA the ΔR_{CT} increased the least for the cells containing GA. This suggests that the surface film formed during the initial “formation” cycles plays a role in the subsequent surface film buildup during the aging cycles. Said another way, increasing the wt% of GA in the cell decreased the overall impedance of the surface film formed after the initial “formation” cycles although the overall impedance was greater after 120 cycles. This...
Figure 3. a) Cycling performance, b) Coulombic efficiency, and c)-e) voltage profiles of graphite/NMC532 full cells without (baseline electrolyte) and with 1.0 and 0.5 wt% GA as an electrolyte additive. The inset of b) shows the CE for the 1st cycle.

Figure 4. Electrochemical impedance spectroscopy showing the change in impedance after a) formation cycles and b) 117 cycles between 3.0–4.4 V fitted using the equivalent circuits shown. The data was acquired at 3.75 V.

<table>
<thead>
<tr>
<th>Cell</th>
<th>After 3rd C/10 formation cycle</th>
<th>After 117th C/3 cycle</th>
<th>Difference in EIS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R_{Initial}</td>
<td>R_{SEI}</td>
<td>R_{CT}</td>
</tr>
<tr>
<td>Baseline</td>
<td>3.1</td>
<td>4.4</td>
<td>11.1</td>
</tr>
<tr>
<td>1.0 wt% GA</td>
<td>3.2</td>
<td>4.7</td>
<td>28.6</td>
</tr>
<tr>
<td>0.5 wt% GA</td>
<td>3.6</td>
<td>5.0</td>
<td>17.7</td>
</tr>
</tbody>
</table>
behavior is consistent with other studies which show that although there is an initial increase in impedance with an additive, later cycles may show a net reduction in impedance growth.23 Impedance data derived from reassembled cells (Supporting Information, Figure S3) indicates that the impedance contribution from the positive electrode is substantially greater than impedance from the negative electrode. This observation has been previously reported in other work where the main contributor to impedance growth in graphite/layered oxide-based full cells is due to changes at the cathode electrode-electrolyte interface.6 Put together, the impedance data from the cycled cells indicates that a more resistive surface film is formed on the cathode surfaces in cells containing GA even though better cycling performance is observed.

Electrode surface morphology and composition.—Representative SEM images of the LiNi\textsubscript{0.5}Mn\textsubscript{0.3}Co\textsubscript{0.2}O\textsubscript{2} electrodes in the pristine state, and cycled state with and without GA as an additive are shown in Figure 5. In the pristine electrode primary particles have a smooth surface and no dark patches or spots are observed. The electrode cycled in the baseline electrolyte without any GA show darker patches on some primary particles indicative of electrolyte decomposition (the rope-like material is C45 carbon black). With the exception of the C45 carbon black, the only observable surface features on the electrodes cycled with 0.5 or 1.0 wt\% GA are small island-like deposits (which are yet smaller for the 1.0 wt\% GA cells). Images of the cycled baseline electrolyte graphite negative electrode (Supporting Information, Figure S4) look very similar to the cycled negative electrodes of the cells containing 1.0 and 0.5 wt\% GA. Whereas the pristine graphite anode has sharp edges and more flaky surfaces, the cycled electrodes display rounder edges and less flaky surfaces indicative of electrolyte decomposition species.

XPS analysis was conducted to gain a more thorough understanding of the surface composition of pristine and cycled LiNi\textsubscript{0.5}Mn\textsubscript{0.3}Co\textsubscript{0.2}O\textsubscript{2} electrodes and the results are given in Figure 6. Prior to analysis, the cycled electrodes were rinsed with CDCl\textsubscript{3} and DMC to remove residual electrolyte and then allowed to dry. The elemental concentrations of the pristine and cycled electrodes are given in Table III. Any changes made to the top ∼2–5 nm on the surface of the cathodes due to cycling and electrolyte/additive degradation should be noticed.13 The C 1s carbon amorphous peak at 284.8 eV was used as the reference to calibrate the XPS spectra.

The pristine cathode surface is mainly comprised of species related to the PVdF binder and conductive carbons. The C 1s spectrum shows multiple peaks at 290.5 (-CF\textsubscript{2} in binder and possible Li\textsubscript{2}CO\textsubscript{3}),24 286.3 (-CH\textsubscript{2} in binder) and a large peak at 284.8 eV (C-C, C-H from carbon black and other amorphous carbons).25 An additional peak at

![Figure 5. SEM images of a pristine NMC electrode and NMC electrodes cycled with and without GA as an electrolyte additive.](image)

![Figure 6. XPS spectra of pristine cathode electrodes and those cycled with and without GA as an electrolyte additive.](image)

| Table III. Elemental composition of the C 1s, O 1s, F 1s and P 2p energies studied. |
|-----------------|--------|--------|--------|--------|
| | C 1s (%) | F 1s (%) | O 1s (%) | P 2p (%) |
| 1.0 wt\% GA | 64.02 | 10.82 | 23.29 | 1.88 |
| 0.5 wt\% GA | 61.55 | 19.12 | 17.67 | 1.65 |
| Baseline | 62.11 | 25.80 | 10.64 | 1.45 |
| Pristine | 66.26 | 29.07 | 4.67 | — |
289.0 eV may represent O-C=O containing surface species.5,6,8,11 The F 1s spectrum is composed of one peak at 687.0 eV \(-\text{CF}_{2}\) in binder.24 The O 1s spectrum shows two peaks at 531.5 (corresponding to low coordination oxygen atoms7 and possible Li\textsubscript{2}CO\textsubscript{3}26 and 529.6 eV (LiNi\textsubscript{0.5}Mn\textsubscript{0.3}Co\textsubscript{0.2}O\textsubscript{2} metal-O bond).13 No peaks are present in the P 2p spectrum.

After cycling the surface composition of all cells is drastically different. For the baseline cell containing no additive the C 1s spectrum the intensity of the peak attributed to C-O species at 286.3 eV14 grew relative to the PVdF binder peak at 290.5 eV. In the F 1s spectrum a new peak at 684.5 eV appeared corresponding to LiF, a common LiPF\textsubscript{6} decomposition species.21 The metal-O bond in the O 1s spectrum decreased in intensity relative to the peak at 531.5 eV and a new peak appeared at 533.0 eV indicative of more oxygen-containing species on the cathode surface. In the P 2p spectrum a new peak at 134.5 eV appeared corresponding to Li\textsubscript{3}PO\textsubscript{4}F\textsubscript{2} species.27 The F1s peak for Li\textsubscript{3}PO\textsubscript{4}F\textsubscript{2} overlaps with the PVdF binder at 687.0 eV. The decreased peak intensities from the binder, the conductive carbon and the metal-O bond together with an increase in LiF, alkyl carbonates and Li\textsubscript{3}PO\textsubscript{4}F\textsubscript{2} species signifies a different cathode surface film composed of decomposed electrolyte.

For the cycled cells containing GA as an additive some clear trends to the cathode surface species are present. In the C 1s spectrum the amorphous carbon peak at 284.8 eV broadens for both 1.0 and 0.5 wt\% GA containing cells suggesting an enhanced deposition of alkyl-containing species. The peak at 286.3 eV (corresponding to C-O species) increases relative to the \(-\text{CF}_{2}\) - binder peak at 290.5 eV for both 1.0 and 0.5 wt\% GA with the higher wt\% GA seeing a larger peak increase. For the cell containing 1.0 wt\% GA a new peak at 287.5 eV appears which likely corresponds to C=O species28 and a subsequent increase in the peak at 289.0 eV \((\text{C-O=C-O})\) occurs. As indicated in Figure 6, increasing the wt\% of GA in the cell leads to a decrease in the amount of LiF species \((684.5 \text{ eV})\ relative to the PVdF binder on the cathode surface film. This has also been observed in other cells containing GA18,21 and SA19,20 as electrolyte additives. The O 1s spectrum shows a large increase in oxygen-containing species in the 530.0–531.0 eV range. As the wt\% of GA is increased in the cell the amount of oxygen-containing deposited species increases as well (as shown in the elemental concentration in Table III). According to the elemental concentration analysis, in the P 2p spectrum the peak at 134.5 eV arising from Li\textsubscript{3}PO\textsubscript{4}F\textsubscript{2} grows as the wt\% of the GA additive is increased in the cell. This has been previously observed for cells containing GA18,21 and SA19,20 as electrolyte additives. Again, since the F 1s spectrum of Li\textsubscript{3}PO\textsubscript{4}F\textsubscript{2} overlaps the PVdF binder peak at 687.0 eV it is hard to see this species increase in that binding energy region.

It is easy to discern a drastic intensity decrease in the O 1s LiNi\textsubscript{0.5}Mn\textsubscript{0.3}Co\textsubscript{0.2}O\textsubscript{2} metal-O bond at 529.6 eV with higher amounts of GA in the cell. This can be attributed to the formation of a more compact film on the surface of the cathode thus diminishing the binding energies coming directly from the cathode material.24 This is corroborated by the C 1s data. Altogether, the increase in oxygen-containing surface species is attributable to an organic film composed of GA decomposition products, as opposed to phosphates or other inorganic species containing oxygen.

As noted previously, the observed C 1s peaks at 289.0 and 287.5 eV should arise from O-C=O and C=O containing species. Importantly, these moieties are inherently present in the GA structure and should be present in the decomposition species of GA. Additionally, the increase in peaks in the O 1s spectrum indicate a substantial increase in oxygen-containing species on the cathode surface when compared to the baseline electrolyte. Thus, we can hypothesize that the additional peaks and increase in peaks in the O 1s and C 1s spectra for the GA containing cells correspond to the decomposition species of GA.

It is interesting to note that although less LiF was observed on the surfaces of the GA containing cells a higher impedance was observed for these cells. Looking at the XPS data it is clear that a more compact surface film most likely composed of organic species from GA decomposition is formed on the surface of the GA containing cells.
and Coulombic efficiencies after 120 cycles when compared to the baseline electrolyte without GA. Differences in full cell impedance indicate that cells containing 1.0 and 0.5 wt% GA had higher overall impedances than the baseline cell. However, the ΔRΩ and ΔRF between post-formation and post-cycling measurements was lowest in the 1.0 and 0.5 wt% GA cells suggesting the initial surface films formed during the formation cycles play a large role in determining the overall cell impedance. XPS of the cycled cathode surfaces showed a significant increase in oxygen-containing species and carbon containing species for the cells cycled with GA compared to the baseline electrolyte. More so, the cycled cathode electrodes indicated that cells containing GA as an electrolyte additive showed suppressed LiF formation and increased Li₄P₂O₇ species formation. Additionally, NMR of the cycled electrolyte indicates a reduction in EMC transesterification products in GA cells suggesting a potential “blocking” of any transition metal catalyzed transesterification sites on the cathode surface. Additional studies investigating the passivation of the graphite electrode by GA are currently underway and should increase our knowledge of GA as an electrolyte additive. Overall, GA showed great promise as an electrolyte additive and the beneficial cycling performance of cells containing GA should arise from the more compact and protective film formed on the cathode surface.

Acknowledgments

Support from the U.S. Department of Energy’s Vehicle Technologies Program (DOE-VTP), specifically from Peter Faguy and Dave Howell, is gratefully acknowledged. The electrodes and cells used in this article were fabricated at Argonne’s Cell Analysis, Modeling and Prototyping (CAMP) Facility. The facilities are supported within the core funding of the Applied Battery Research (ABR) for Transportation Program. We are grateful to team members at CAMP, especially Dees, W. Lu, S. Trask and B. Polzin for their help and guidance. This work made use of Northwestern University Central Facilities supported by the Materials Research Science and Engineering Center (MRSEC) through National Science Foundation (NSF) under Contract DMR-1121262. The submitted manuscript has been created by UChicagoArgonne, LLC, Operator of Argonne National Laboratory (“Argonne”). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.

References

27. M. He, C. So, C. Pheebs, Z. Feng, J. G. Connel, C. Liao, Y. Wang, J. I. Shkrob, and Z. Zhang, “Mechanistic Insight in the Function of Phosphate Additives for Protection of LiNi0.5Co0.2Mn0.3O4 Cathode in High Voltage Li-ion Cells,” ACS Appl. Mater. Interfaces, 8, 11450 (2016).