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We present details of the theory and experimental observation of dynamical diffraction of x rays
at grazing angle from crystal planes normal to a surface. We are able to associate different features
of the specularly reflected and diffracted-reflected beam fluxes with the contributions from the a and
B branches of the dispersion surfaces. The theory predicts surface propagation modes to which
internal and external beams can couple only through the diffraction process. An experiment is de-
scribed in which the specularly reflected and reflected-diffracted beams were simultaneously ob-
served for 8-keV x rays incident on germanium. The agreement with first-order theory is good, but
we observe systematic deviations. We present calculations that illustrate how eigenstates of the
wave fields, which are x-ray standing waves with nodal planes normal to the surface of the crystal,
can be used to obtain atomic registration at a surface or interface.

I. INTRODUCTION

Waves can penetrate into regions where their propaga-
tion is nominally forbidden, as has been demonstrated by
phenomena ranging from frustrated total internal
reflection! to particle tunneling. In the conventional
plane-wave representation? these effects are described by
evanescent waves, i.e., waves whose wave vector consists
of real and imaginary components. When the index of re-
fraction of materials is generally less than unity, such as
at x-ray energies, the phenomenon is manifested as total
external reflection, with wave solutions decaying ex-
ponentially into the surface of the medium. The short de-
cay length of evanescent x rays makes them attractive as
a surface probe.

It has been natural to combine the surface enhance-
ment of grazing-incidence x rays with diffraction to ob-
tain the ordering of surface layers.> The geometry of sur-
face diffraction at grazing angle is the third of the three
limiting geometries of x-ray diffraction (the symmetric
Bragg and Laue cases being the other two), which are
determined by symmetric orientation of the surface rela-
tive to the crystal planes and the dispersion plane. It
differs from the other two geometries in that total exter-
nal reflection is significant over much of the phase space
of the diffraction problem, including away from the
Bragg condition.

There has recently been a great deal of interest in
effects predicted by the dynamical theory of x-ray
diffraction in crystals in the grazing-angle geometry.*~1°
Synchrotron radiation of sufficient intensity and angular
collimation has allowed the resolution of these effects for
the first time.!° Furthermore, the effects predicted by the
dynamical theory of grazing-angle x rays near a
diffraction condition have potential application to the
study of interfaces as well as surfaces.

The purpose of this paper is severalfold. (1) We
rederive the two-beam approximation to the dynamical
theory of x-ray diffraction in the grazing-angle geometry.
This derivation, in terms of angles, permits a useful dis-
cussion of the interaction between the different x-ray
beams at the surface and makes it easier to relate the data
to the dispersion surface in this geometry. (2) We de-
scribe the details of an experimental configuration used to
obtain diffraction and reflection of synchrotron radiation
at grazing angles. (3) We present new results obtained
from the diffraction of x rays of 8 keV energy from ger-
manium. The results cover a much wider region of the
phase space in the vicinity of the diffraction condition
than previously reported!® and are calibrated for the first
time in normalized flux. These results are generally in
good agreement with the predictions of the theory, but
show deviations from the lowest-order approximations in
the two-beam theory. (4) In the last part of this paper we
shall discuss the production of x-ray standing waves in
this geometry. X-ray standing waves (XSW’s) generated
in the Bragg geometry!! have proven to be a major new
tool for the study of atoms at or near surfaces,'>!3 and
the grazing-angle geometry offers the possibility of gen-
erating these waves with a wave vector parallel to a sur-
face or an interface.

II. THEORY

In this section we review a coherent theoretical treat-
ment of all the beams present in the grazing-angle
geometry, using the two-beam approximation to the
dynamical theory. We demonstrate the general manner
in which dispersion surface solutions of the diffraction
treatment couple to the incident and exiting beams. We
shall show that under certain circumstances special sur-
face waves exist whose decay rates into the bulk or the
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vacuum are controllable.

The original derivation of the diffraction intensity was
done by Afanas’ev and Melkonyan.* Various aspects of
the problem have been treated by Aleksandrov et al.’
and early theory and experiments have been summarized
in a review by Andreev.® The complete solution which
included the intensities of the specularly reflected beams
was presented by Cowan’ and Andreeva and Borisova.}t
Cowan produced results for standing-wave fields.

We would like to derive the angles and fluxes of the
various x-ray beams associated with the surface dynami-
cal diffraction problem in a slightly different way here.
The notation used follows the treatment of dynamical
diffraction by Batterman and Cole (hereafter BC).!*

We shall consider grazing-angle diffraction (GAD) in
the fully symmetric case where the surface is a particular
crystal plane, and the diffraction is due to another set of
planes which are normal to the surface. That is, the
scattering is done by a reciprocal-lattice vector which is
parallel to the surface. We shall derive results for an x-
ray beam with o polarization. We restrict ourselves to a
range of angles where the two-beam approximation is val-
id.

Figure 1 shows the geometry and includes the beams
which can result from coupling to solutions inside and
outside the crystal for an x-ray beam with wave vector k,
incident on the surface at an angle ¢. Since translational
symmetry is preserved parallel to the surface but not nor-
mal to it, only momentum parallel to the surface is con-
served,

ko =k =Ky » (1)

where k, is the wave vector of the specularly reflected
beam outside the crystal, and K, is the wave vector of the
undiffracted beam propagating inside the crystal. Out-
side the crystal,

ik0|=|ks|:IkH, ’ (23)
SO
P=@ . ‘ (2b)

The parallel component of the diffracted beam is deter-
mined simply by adding the reciprocal-lattice vector H
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FIG. 1. Diagram showing beams which can result from an
x-ray beam of wave vector k, incident on a crystal and
diffracted by a reciprocal-lattice vector H parallel to the crystal
surface.
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associated with the diffracting planes to the parallel com-
ponent of the incident beam k,, where we express the
geometrical Bragg condition

H

5 =1kl sinfp . (3)

The components of the wave vectors projected on the
surface of the crystal are not affected by the index of re-
fraction inside the crystal and are shown in Fig. 2. The
angle of the diffracted beam with respect to the
diffracting planes does not have to be the same as the an-
gle 0 of the incident beam to those planes.

We get

kG, —k§, sin29=k1,2,n —(H —kg, sing)* . 4)
By using AG=60—0,,
cos’p— sin>(AO+6y)
= cos’py —[2sinfy — sin(AO+6,))? . (5)
For small angles ¢, the result is
@4 =¢>+2A05sin20y . (6)

We now consider the solutions inside the crystal. Fol-
lowing BC we consider that the wave vectors inside the
crystal are complex, with the imaginary part normal to
the surface. The periodic dielectric constant of the crys-
tal is expanded into Fourier components of the reciprocal
lattice,

€(r)=1—T 3 Fye >™HT, )
H

where

r,A?

e

aVv

and r, is the classical electron radius, A is the x-ray wave-
length, and V is the volume of the unit cell. The magni-
tudes of the wave vectors in the incident and diffracted
direction are given by!*

K3=k3(1—TF,)+2ky&, (8)

x

i (|

FIG. 2. Components of the wave vector parallel to the crys-
tal surface which are conserved.
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and
KZ=k3(1—TFy)+2koéy , )

where 1 —T'F, is the average dielectric constant for the
crystal, and

k3{T?FyFz
§0§ H™ '—L_I;I_}‘I‘ (10)
4
is determined by the secular equation solving Maxwell’s
equations inside the periodic medium.

As is well known in the conventional dynamical theory
of diffraction, the solutions of the secular equation corre-
spond to linear combinations of diffracted and undif-
fracted beams propagating inside the crystal, resulting in
a Bloch wave modulated with the periodicity of the lat-
tice which is diffracting. Equation (10) is the fundamen-
tal equation describing the loci of such solutions in re-
ciprocal space, known as dispersion surfaces. The quanti-
ties £y, &y are the fractional difference in magnitude of
the actual refracted wave vectors from the mean value
they would have for an isotropic dielectric constant
(1—TF,). The solutions as they would look for
Ky =K, =0 are shown in Fig. 3. The loci of solutions
known as the a and 3 branches correspond to standing
waves with nodes on the diffraction planes and between
the diffraction planes, respectively. From BC we readily
determine that for the grazing-angle geometry these
quantities are given by

ko(CFyTFz)2
go,:%[ni(nzﬂ)“ﬁ (11a)
and
ko(TF,TF-)\7?
= (11b)

T 2AptP )]

%

FIG. 3. Dispersion surfaces occurring at the diffraction con-
dition. The loci of all possible incident and diffracted wave vec-
tors in the vacuum intersect at L. The loci of those wave vec-
tors in the crystal would intersect at Q if the periodic com-
ponents of the dielectric constant were not present. The orien-
tation of the crystal planes is shown. The hatched region C
designates where diffracted beams exist but are evanescent into
the vacuum.
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where the + sign is taken for i =a, the — sign for i =p,
and ‘

n=(T'FyTF5)"/?A0sin20; . (12)
We make the approximation
Ko =ko(1—=3TFy+&y /kg) (13a)
and
Kyi=ko(1—1TFy+&y /ky) , (13b)

where i =a,3. Then the phase-matching conditions (1) at
the crystal boundary take the forms

ko cosp=K,; cos®; (14a)

and

ky cospy =Ky cos®@y; , (14b)

where ®@,; and ®; are the angles that the internal beams
K, and Kp; make with the surface. We shall be con-
cerned only with the case where @ and ®; are small, so
we keep only the leading terms in the series to get

2, =@?+2&y; /ky—TF, . (15a)

When we refer to the critical angle ¢., we shall be ignor-
ing the diffractive component, i.e., 0=¢>—I'F,. By a
similar process,

Oy =@y +2&y; /ko—TF, , (15b)

where @ is obtained from (6).

The circumstances under which the internal solutions
inside the crystal are coupled to external solutions is
readily visualized. In the geometry of surface diffraction
at glancing incidence, the crystal planes shown in Fig. 3
are normal to the surface, and the wave vectors K, and
Ky are nearly parallel to it. The reciprocal-lattice vector
H lies along the surface of the crystal, and the intersect-
ing segments of circles of constant wave vector are really
the intersections of spheres of constant wave vector,
when we take into account the possibility that the in-
cident and propagating beams are not strictly parallel to
the crystal surface. Figure 4 shows the surfaces traced
out by all possible angles of incidence and exit from the
surface diffraction problem. The standard Ewald triangle
shown in Fig. 3 is the intersection of these spheres with
the surface of the crystal. A vertical slice through the
section AB is illustrated in Fig. 5. Because translational
symmetry is broken in passing through the surface, it is
permitted to add an arbitrary component normal to the
surface to a wave vector on one side of the interface to al-
low coupling to a wave vector on the other side. Figure 5
shows a vertical cross section through the dispersion sur-
faces illustrating this coupling for three different angles
of incidence.

For ¢=¢,, the angle of incidence is sufficiently large
that a surface normal couples the incident beam not only
to a specularly reflected and a reflected-diffracted beam,
but to tie points for an a-branch and a B-branch solution
propagating in the crystal as well. Other tie points occur
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-
crystal surface

FIG. 4. Generalization of the dispersion surface of Fig. 3 to
three dimensions in the GAD geometry. A surface normal is
shown (dashed line) along which arbitrary wave vectors may be
added to permit coupling of wave vectors into and out of the
crystal. The cross section is displaced from the symmetry line
of Fig. 3.

where the surface normal cuts through dispersion sur-
faces, but these are not depicted because they correspond
to sources originating inside the crystal which are un-
physical.

FIG. 5. Expanded view of the cross section of the dispersion
surfaces shown in Fig. 4, normal to the surface of the crystal
(hatched). The cut is taken through AB of Fig. 3. The tie
points are illustrated for internal and external wave vectors at
three different angles of incidence ¢.
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For a lower angle of incidence, ¢ =¢,, we see that a
surface normal can no longer couple the incident beam to
a tie point on the 8 branch, but does couple to all the oth-
er solutions. In principle, this angle will result in a
stronger specular reflection and reflected-diffracted beam.

For a very low angle of incidence, ¢=¢,, we see that
the surface normal is no longer capable of coupling the
incident beam to any solution which propagates inside
the crystal, but surprisingly is able to couple to an exter-
nal reflected-diffracted beam as well as to a specular
reflection. In the vicinity of a diffraction condition, there
is not a single critical angle for total external reflection,
but two. Internal solutions with real wave vectors do not
couple to the incident beam at very low angles because it
is impossible to obtain a phase match at the boundary. If
we consider internal solutions which are complex, howev-
er, it is possible to couple such wave vectors to the in-
cident beam. Thus there can be evanescent solutions
which decay exponentially into the crystal. These solu-
tions also give rise to a reflected-diffracted beam and will
be discussed later. From (6) and (15a) and (15b), they
occur under conditions where

@*<TF,—2& /k, . (16)

The penetration depths are determined from the imagi-
nary components

Koi1 =Ky =K(sin®y; =koPy; . (17)

There is one more case in which the diffracted solution
can become evanescent. From Eq. (6) it is seen that for

@* < —2A0sinb, (18)

@y becomes imaginary. The normal component of the
reflected-diffracted beam,

kg ~kopy » (19)

is also imaginary. Under these conditions, the reflected-
diffracted beam is evanescent into the vacuum. One way
of understanding this result can be seen in Fig. 3. In the
GAD geometry it is possible to have an a-branch solu-
tion in which the wave vector created by diffraction is
longer than the vacuum wave vector,® the hatched region
of the a branch labeled C in Fig. 3. While this solution
does not escape as a propagating beam, it is observed in-
directly.!® A diffracted beam can be created which is
evanescent both into the crystal and into the vacuum,
analogous to a surface plasmon. Such a beam has a wave
vector which is real only along the surface of the crystal.

We now proceed to calculate the amplitudes of the
electric fields involved in the problem. For o polariza-
tion the requirement at the boundary of the crystal are
that the fields E| and D, be continuous. The total elec-
tric field in the crystal is given by

E=Ege O 4Ege o RHT (20a)
and outside the crystal by
E=Epe " OT4Ee TN 4B e THT (20b)
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The boundary conditions translate into the following ex-
pressions for the field amplitudes at the surface:

Ey+E;=Ez,+Ey, (21a)
Ey=Ep.tEyg (21b)
and
P(Ey—E)=®,Eq,+PosEog » (22a)
_‘pHEH=q)HaEHa+q>HBEHB ’ (22b)
where we assume that ¢, ®;, and ®j; are small.
From (21b) and (22b) one immediately obtains
Pt on
Ey, = - |, (23a)
Ha H ¢HB__ ¢Ha
Pyt oy
Eys=—E (23b)
HE " Py~ Py,

Wo(@— Pl Py, + @y )—wgle— P N Pypt+@y)
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and
20E,=(@+ Py, )Eq, +(@p+Pog)Eyg . (24)

The relationship between E; and E; inside the crystal
at a tie point on one of the dispersion surfaces is obtained
from BC,

280

— | =a,B . 25
kKoTFy i=a,B (25)

Ey = Ey=w;Ey;,

Combing (23a), (23b), (24), and (25), we determine that
E. = 2E0¢2(<I>Ha—-<l>lm)wawﬁ
7w (ot @) ( Py +oy ) —wel@+ P N Pypt@p)
(26)

and

Es :EO

In addition to the electric fields of the beams which are
capable of escaping the crystal, it will be useful to calcu-
late the x-ray standing-wave fields at the surface, which
are capable of exciting atoms in the crystal near the sur-
face or atoms of an adsorbate on the surface. It is possi-
ble to have a large modulation at the surface, even in the
case where the diffracted beam cannot leave the crystal.

III. THE EXPERIMENT

The experimental configuration for GAD is shown in
Fig. 6. The experiment whose results are presented here
was performed on a bending-magnet beamline at the Cor-
nell High Energy Synchrotron Source (CHESS).

X rays from the synchrotron were diffracted through a
double-crystal monochromator, tuned to 7.9 keV. The
vertically reflecting monochromator was implemented
with a symmetrically cut Si(220) first crystal and an
asymmetrically cut Si(220) second crystal. The mag-
nification factor of the second crystal was greater than 50
at the energy 7.9 keV. The combination provided high
collection efficiency, angular collimation in the vertical
dimension, and angular displacement of harmonic radia-
tion. The beam was then defined by slits to a horizontal
width of about 0.1 mm. After passing through an ion
chamber used to normalize the intensity, the beam was
incident on the sample crystal. This consisted of a ger-
manium crystal with a (111) surface polished to an opti-
cal finish, positioned so that its surface normal was nearly
perpendicular to the incident beam. The sample was
mounted on a two-circle goniometer so that the angle of
incidence @ and the rotation about the surface normal 6
could be varied independently.

Wa(@+Pop)(Ppat@p) —wa(@+ P Prgtep) |

27

ASYMM.
Si (220)
DOUBLE

CRYSTAL
MONOCHROMATOR

DIFFRACTED
BEAM

ION Q

ION CHAMBER U SPECULAR BEAM

FIG. 6. Schematic diagram of the experiment.
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The incident energy was such that for the (220)
reflection of germanium 63 =23.1°. The combination of
vertical slits and the synchrotron-source diameter limited
the horizontal divergence of the beam to 250 urad (com-
pared to a critical angle for Ge of 4.5 mrad). The
asymmetrically cut second monochromator crystal limit-
ed the vertical divergence of the beam to 1.4 urad (com-
pared to the Bragg rocking-curve width of 22 urad at this
energy for Ge). In previous investigations of GAD,” !’
beam intensities and angular resolution have limited the
resolution of dynamical effects in both ¢ and A6. In ad-
dition, the high degree of collimation which we were able
to employ provided an input beam which was a close ap-
proximation to the plane-wave source upon which the
theory is based.

Because of the grazing-angle geometry of this experi-
ment, the scattering which gives rise to diffraction is
confined to a thin layer of atoms near the surface. It is
much more important than in the Bragg geometry that
the surface be defect and stress free. The crystal surface
was polished using an etching polishing compound. Im-
mediately before the experiment, the surface oxide was

1.0

0
s
i

i
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W
H‘/////

Normalized Flux
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removed with an HF etch and rinsed in an iodine-
methanol solution to provide a passivating monolayer of
iodine. The surface was maintained in helium at atmos-
pheric pressure thereafter to minimize further chemical
reaction.

The specular and diffracted beam fluxes were moni-
tored with ion chambers using Ar gas. An additional slit
was employed between the sample and the specular ion
chamber to ensure that the component of the incident
beam which might pass by the sample was not collected
as specular beam. The actual photon-count rate observed
under the conditions of specular reflection was typically

2% 107 s™! with a diffracted beam count of the same or-
der.

IV. RESULTS

Figures 7(a) and 7(b) show two views of the normalized
flux of the specularly reflected beam (i.e., reflectivity) cal-
culated for 7.9-keV x rays incident on the Ge surface as a
function of @ and A@. It is convenient to visualize the
plane of the ¢ and A0 axes as identical to the surface de-

FIG. 7. Comparison of theoretical and experimental fluxes for the specular beam from the Ge(220) reflection at 7.9 keV, ¢, =5.4

mrad. The fluxes are normalized to the incident beam and plotted as a function of A9 and @. The calculated reflectivity plot is
viewed from two different perspectives in (a) and (b), and corresponding experimental data are shown in (c) and (d). The positions of
the a and B branches of the dispersion surfaces for K, =K, =0 are plotted, respectively, as solid and dashed lines in the @-A@ plane.
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picted in Fig. 3, and rotated so that the vector K, is
parallel to the @ axis. Decreasing the angle ¢ corre-
sponds to increasing K, and linear motion along the A6
axis corresponds to small changes in the A6 of the actual
vector on the dispersion surface. Thus the a¢ and B
branches, when plotted in Fig. 7 as a function of ¢ and
AO, are geometrically almost identical to their actual
shape on the Ewald plot in Fig. 3.

Data from the experimental measurement of the specu-
larly reflected beam at 7.9 keV are plotted in Figs. 7(c)
and 7(d). The data were obtained by holding ¢ constant
and varying —100<A6< 100 urad and by holding A8
constant and varying 0 <¢ < 12 mrad. Data collected for
@ <4 mrad were corrected for an interception area of the
sample less than the cross section of the incident beam
and for obstruction of the reflected beam. All of the data
were then normalized to the magnitude of the straight
through beam in the specular beam ion chamber in order
to give absolute reflectivities. When these corrections
were made, the theoretical and experimental values for
the specular reflectivity were in generally good agree-
ment.

If o<@., as A6 is varied, we observe a high
reflectivity, except in the vicinity of the Bragg reflection,

(|
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where we observe a “‘canyon of diffraction” [Figs. 7(a)
and 7(c)]. Inside this “canyon,” as seen in Figs. 7(b) and
7(d), the reflectivity for A@= const=~0 shows a two-step
change with increasing @. This corresponds to cutting
across the thresholds for the a then the 8 branch. As
shown in Figs. 7(b) and 7(d), the reflectivity in the vicinity
of the Bragg condition A@=0 continues to be high for
@ > @, because the dielectric constant sampled by the [3-
branch solution is greater than the average, so the critical
angle is also greater.

When plotted in this manner, the data demonstrate
that reflectivity on one side of the “canyon of diffraction”
is due to coupling to solutions in the a branch, and on
the other side to coupling to the B branch. While it
seems obvious that there should be a dip in the specular
beam flux at the Bragg condition due to energy going into
the diffracted beam, there is also a maximum in that flux
above the critical angle.

Figures 8(a) and 8(b) show two views of a plot of the
calculated reflected-diffracted beam flux under the same
conditions as the specular beam in Fig. 7. The experi-
mentally observed flux is shown in Figs. 8(c) and 8(d).
The diffracted-beam data were corrected for ¢ <4 mrad
in the manner described above for the specular beam data

e (b)
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nNe o .
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FIG. 8. Comparison of theoretical and experimental fluxes for the reflected-diffracted beam from the Ge(220) reflection at 7.9 keV,
@.=5.4 mrad. The fluxes are normalized to the incident beam and plotted as a function of A6 and ¢. The calculated flux is viewed
from two different perspectives in (a) and (b), and corresponding experimental data are shown in (c) and (d). The positions of the «
and B branches of the dispersion surfaces are plotted as described in Fig. 7.
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and normalized to the incident flux. We present the data
in comparison with an unbroadened calculation so that
details predicted by the theory are shown in their true
widths.

We note that shifts in the observed diffraction angle
and width of the reflected-diffracted peak with angle of
incidence are explained by the locations of the a and 8
branches of the dispersion surface. A sharp cusp in
diffracted beam flux for ¢ =2 mrad is seen to occur at the
threshold for coupling to the a branch. We observe fur-
ther that the reflected-diffracted beam coupled to the a
branch is cut off for some value of A6 <0, the region
designated C in Fig. 3.

We have experimentally observed that the B-branch
solution gives high reflectivity and diffracted-beam inten-
sity for angles of incidence ¢ > ¢., as predicted by the
first-order theory. It is seen by comparing Figs. 8(a) and
8(c), however, that there is a systematic deviation occur-
ring in the 6 position of the observed diffracted beam
with increasing angle of incidence, compared to the posi-
tion predicted by the calculation. It is evident that
higher-order corrections become significant at relatively
small ¢.

V. DISCUSSION

The GAD geometry offers the possibility of observing
grazing-angle x-ray standing-wave (GAXSW) effects simi-
lar to those observed in the Bragg geometry.!! "!* In this
geometry, however, the x-ray standing wave (i.e., the
Bloch-wave modulation caused by the interference of the
various beams above or below the surface) has nodal
planes normal to the crystal surface. By changing ¢ or
A6 so as to vary the coupling of the incident wave be-
tween the a- and B-branch solutions, the phase of the x-
ray standing wave may be continuously varied through
an angle of m. The nodes of the standing wave are
translated parallel to the surface by up to one-half the
real-space distance determined by the reciprocal-lattice
vector which is involved in the diffraction.

Figure 9 shows the x-ray intensity versus A6 calculated
from Egs. (20b), (26) and (27) at four possible atomic posi-
tions on the Ge unit cell for ¢=5.4 mrad at 8 keV. The
calculation is made for atoms at a height of 2.5 A above
the Ge (111) surface. The intensities, normalized to the
incident electric field, correspond to an absorbate atom
located along the reciprocal-lattice vector direction on
the crystal surface for r =0, a /4, a /2, and 3a /4, where a
is the distance between the diffracting planes. Near ¢,
the scan in A6 gives the maximum excursion in the sur-
face standing-wave intensity, since it cuts directly across
from an a-branch solution to a B-branch solution to the
maximum extent. In practice, the yield of x-ray fluores-
cence radiation, photoelectrons, Auger electrons, etc. for
atoms on or near the surface would be fitted by such a
plot, according to their coherent position in the unit cell.

GAXSW effects obviously occur in the atoms of the
substrate as well as in an overlayer. Large changes in the
penetration depth of the x rays in the vicinity of the
diffraction condition cause significant deviations from the
amount of fluorescence due to a single layer of atoms at
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Normalized Intensity

0 .
-60 -40 20 0 20 40 60
A8 (prad)

FIG. 9. Intensity of the electric field near the surface of a
crystal vs A@ for ¢=>5.4 mrad. Curves are shown for atoms lo-
cated on the diffraction planes (r =0) and at three interplanar
sites along the H direction. The intensity is calculated for a
Ge(220) reflection at 8 keV and normalized to the incident
beam.

the surface. Figure 10 is a plot of the fluorescence yield
of 1.2-keV Ge La radiation from a similar Ge sample
into a Si(Li) detector, taken from Ref. 10. It was ob-
tained by varying A0 while holding ¢ =4 mrad. Superim-
posed on the data points are curves of the relative x-ray
fluorescence calculated for Ge atoms on the atomic
planes (solid), and between the atomic planes (dashed)
along the (220) reciprocal-lattice vector. The data are in
moderate agreement with the theory, which takes into ac-
count the rapidly changing extinction depth in the vicini-
ty of the diffraction condition, as well as the escape depth
of the fluorescent radiation. Note that the calculated and

Relative Intensity

I 1 2
-40 -20 0] 20 40 60
A8 (prad)

FIG. 10. Ge La fluorescence measured (points) at the (220)
diffraction condition at 8 keV while varying A0 for ¢ =4 mrad.
For a uniform distribution of fluorescing atoms in the bulk of
the crystal, the solid line gives the fluorescence calculated for
atoms on the diffraction planes and the dashed line the fluores-
cence for atoms between the diffraction planes. The latter curve
is more intense because absorption is lower for XSW between
the diffracting planes and is scaled down accordingly.
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FIG. 11. Logarithm of the calculated penetration depth for
the diffracted beam (B branch) for the Ge(220) reflection at 8
keV as a function of ¢ and A8 (in rad). The positions of the a
and B branches of the dispersion surfaces are plotted as de-
scribed in Fig. 7.

measured fluorescence from the internal Ge atoms differs
markedly from the fluorescence predicted from the field
intensity seen by the atoms just at the surface (Fig. 10,
r =0). Comparison of Fig. 10 with Figs. 8(a) and 8(c)
shows that relatively strong fluorescent yields are ob-
tained even when a reflected-diffracted beam is forbidden
by (6), because the evanescent diffracted wave on the sur-
face has a large amplitude.

The diffractive and standing-wave effects which have
been observed for the interface of Ge with the vacuum
apply equally well to the interface of a material with a
lower susceptibility on top of a material with a higher
susceptibility. GAXSW’s parallel to the interface should
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be observable even for an interface which is buried under-
neath the surface of a thin film, so long as the x-ray
fluorescence or other indication of the atomic excitation
is able to escape.

Furthermore, @ and 6 can be chosen so that the wave
penetrating the boundary is evanescent, thereby reducing
background. Figure 11 shows the penetration depths cal-
culated for the 8-keV (220) B-branch diffracted beam into
the Ge crystal as a function of ¢ and Af8. At 8 keV it is
possible to reduce the penetration depth into the Ge to 5
nm or less. ‘

In summary, we have described an experiment which
observes the fluxes of the specularly reflected and
reflected-diffracted beams in the GAD geometry over the
entire range of the diffraction process. The angular reso-
lution and intensity of the incident beam obtained using a
synchrotron-radiation source were sufficient to make
direct comparisons to the two-beam dynamical theory
calculated for diffraction from germanium at 8 keV. The
observed intensities were normalized to the incident in-
tensity, giving the first absolute measurements of this
type. The observed intensities are in good agreement
with the theory evaluated to first order, allowing for in-
strumental broadening, except for systematic deviations
in the location of the 8 branch observed from reflection
and diffraction for values of ¢ above the critical angle. It
is proposed that the glancing-incidence diffraction
geometry is a potentially useful one for the extension of
the XSW method. It allows for the precise determination
of atomic overlayer position parallel to the surface of a
substrate and offers the possibility of making such a mea-
surement on atoms at an interface which is deeply buried.
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