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Abstract 
X-ray diffraction from crystal surfaces at grazing 
angles gives rise to X-ray standing waves above and 
below the surface. Expressions are derived for the 
fluorescence observed from atoms located on or in a 
crystal as a result of excitation by the grazing-angle 
X-ray standing waves. In addition to the dependence 
of the fluorescence on the position of the atom with 
regard to the crystal plane that is responsible for 
the diffraction, the standing-wave amplitude also 
depends on the distance from the surface. We present 
standing-wave measurements from I on Ge(111) and 
the Ge atoms themselves which illustrate these effects. 

1. Introduction 
The idea of X-ray standing waves was first proposed 
and demonstrated by Batterman (1964, 1969), who 
realized that the interference between incident and 
diffracted beams could be used to excite atoms selec- 
tively in a crystal. The location of impurity atoms in 
or on the crystal is readily determined along the 
reciprocal-lattice vector responsible for the diffrac- 
tion in the two-beam case (Golovchenko, Batterman 
& Brown, 1974). While X-ray standing-wave (XSW) 
measurements have been made in both the Bragg 
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(Golovchenko, Batterman & Brown, 1974) and the 
Laue (Materlik, Frahm & Bedzyk, 1984) geometries, 
their principal utility has been with systems measured 
in the Bragg geometry. 

Concurrently, the grazing-angle-diffraction (GAD) 
geometry has proven to be very useful for the determi- 
nation of lattices on crystal surfaces, particularly the 
two-dimensional lattices that occur in adsorbate 
studies (Marra, Eisenberger & Cho, 1979; Eisenber- 
ger & Marra, 1981). In this geometry, a collimated 
X-ray beam is incident on a crystal surface at a grazing 
angle, usually close to the angle {Pc for total external 
reflection. The X-ray beam diffracts from a reciprocal- 
lattice vector approximately parallel to the crystal 
surface and exits the crystal at a grazing angle. The 
dynamical theory of X-ray diffraction has been 
applied to this geometry (Afanas'ev & Melkonyan, 
1983; Cowan, 1985) and X-ray standing-wave effects 
have been observed (Afanas'ev, Imamov, Maslov & 
Pashaev, 1984; Cowan, Brennan, Jach, Bedzyk & 
Materlik, 1986; Hashizume & Sakata, 1989). X-ray 
standing waves have recently been used for the first 
determination of adsorbate-atom positions in the 
GAD geometry (Jach & Bedzyk, 1990). The purposes 
of this paper are to derive the expressions for the 
X-ray standing-wave fields that occur in GAD in 
terms of the same parameters as XSW in the Bragg 
geometry and to demonstrate their validity over a 
wide range of incidence angles near the critical angle, 
where the penetration of the X-ray beams varies con- 
siderably. 
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2. Theory 

The geometry of GAD is shown in Fig. 1. An X-ray 
beam is incident on the crystal surface from a grazing 
angle. We consider only diffraction from crystal 
planes normal to the surface. The notation follows a 
previous description of GAD (Jach, Cowan, Shen & 
Bedzyk, 1989). The external field intensity is 
described by 

I = lEo exp [ -  i(ko- r - tot) ] + Es exp [ -  i(ks" r - tot) ] 

+ EH exp [ -  i(kH • r -  tot)]l 2, (1) 

where Eo, Es and E H represent the fields of the 
incident, specularly reflected and reflected-diffracted 
beams, respectively. The theory and experiment will 
be limited to the tr-polarization state, as defined pre- 
viously for this geometry (Afanas'ev & Melkonyan, 
1983), in which all electric fields are, to a good 
approximation, normal to the crystal surface. Transla- 
tional invariance is not maintained across the inter- 
face. Consequently, we decompose all wave vectors 
into components parallel and perpendicular to the 
surface, k=k±+k l l  , where the Bragg condition is 
expressed by ~11 + H = kHII- 

The intensity of the wave field near the surface 
takes the form 

I=  lEo exp {-i[ko(sin ¢)z  +koll "r,]} 

+ Es exp {i[ko(sin ~P)z-koll" rll]} 

+ EH{exp i[ko(sin ~pH)z-koll . r l i - H .  rll]}[ 2, (2) 

where ~p is the angle of incidence and +~. is the surface 
normal into the crystal. The takeoff angle of the 
diffracted beam q~n = ~ ~ + iq~ ~ is complex since the 
diffracted beam may vanish in the extemal direction. 
When the common factors are removed and with the 
assumption that ~p and q~H are small, the intensity 
takes the form 

I = leo exp ( -  ikdpz) exp (-ikoll • rll) 

x[1 + ( Es/ Eo) exp ( i2ko~oZ) + ( EH/ Eo) 

x exp { i[ ko( q~H + ~p )Z -- H"  rill} ]12 . (3) 

Since I = E'E ,  we may evaluate the expression using 

ko 

/ . - /  \ 

/ ~s,,--%,,,, ..- ~ -. :Ik.,.--K.,. \ 
/ , ,  n ,~ , X 

~o; / I I I I I I l i l l l  N~,., 
c~ystal plones 

Fig. 1. Diagram of  the grazing-angle geometry. 

the substitutions 

Es/Eo = R~ exp (ivy) (4) 

and 

EH/Eo = R2 exp (iv2), (5) 

where the Es = Es(ko, ~p, 0) and EH = EH(ko, ~p, O) are 
readily determined by boundary conditions and dis- 
persion relations (Afanas'ev & Melkonyan, 1983; 
Cowan, 1985). 

Expansion of (3) leads to the result 

I =  Eo2{1 + R~ + R~ exp (-2ko~o~z) 

+2R~ cos (v~ +2ko ~oz) 

+2R2 exp (-ko~o~z) 

xcos [ vz + ko( ~'n + ~ p ) z - H .  rll] 

+2R1R2 exp (-ko~'~z) 

xcos[v2-vl+ko(~p'n-~p)z-H'r l l]} .  (6) 

The probability of electronic excitation of atoms in 
the dipole approximation is directly proportional to 
the intensity of the radiation at the atomic site. We 
assume a two-dimensional distribution of atoms 
above the surface at a constant distance z < 0 with a 
general density in the plane of p(r). In such a case, 
Hertel, Materlik & Zegenhagen (1985) defined a yield 
proportional to the density projected along the 
reciprocal-lattice vector H, which will be observed as 
fluorescent radiation, Auger electrons etc. With this 
definition, 

Y =  1 + RE+ R 2 exp ( - 2 k o ~ Z )  

+2R1 cos (vl +2k0~z) 

+ 2gEfH exp ( - k o ~ Z )  

x {cos [v2+ k o ( ~  + ~)z + 27rpn] 

+glcos[vE-Vl+ko(~'n-~o)z+27rpH]}, (7) 

where f ,  and PH are called the coherent fraction and 
coherent position, respectively. They are the ampli- 
tude and phase of the Hth  Fourier component of the 
atomic density function of excited atoms projected 
along H, 

PH = - H -  rll/27r. (8) 

For atoms below the surface of the crystal, excita- 
tion occurs as a result of the coherent action of the 
penetrating or Laue solutions. The intensity of the 
field inside the crystal is 

I = [Do~ exp [- i(Ko~- r - t o t ) ]  

+Dos exp [ - i (Ko~.  r - t o t ) ]  

+DH~ exp [--i(KH,, • r--tot)] 

+ DH~ exp [--i(KH~ • r -  tot)][ 2, (9) 
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where Do~ and Dm are the fields of the undiffracted 
and diffracted beams, respectively, for i = a, /3, the 
two branches of the diffraction solution in the crystal. 
The wave vectors Ko~ and Km are the internal wave 
vectors for the undiffracted and diffracted beams. 

We decompose the wave vectors as before into 
components parallel and perpendicular to the surface 
and assume again that the polarization is approxi- 
mately normal to the surface. Since H is parallel to 
the surface, Ku,~± = Ko~,±, and we obtain 

I = IDo~, exp (-iKo~,@o~,Z)+ Doo exp (-iKoo@ot3Z) 

+ [Dn,  exp (-iKo,~CI%,~z) 

+ Due exp (-iKoo@ooZ)] exp ( - i l l -  rll)l 2. (10) 

The fields Do, and Dn, are complex and we define 
= t iDol  = Do~ Do~ + " " and Dm D'u~ + iD'~. To first order, 

we can say that Ko~@o~Z=koCrPo~Z, where ~0~= 
@~+ i@g~. Expressions for the fields Do~ = Eo~ and 
Dm =Era  (Afanas'ev & Melkonyan, 1983; Cowan, 
1985) and the angles @o~ (Jach, Cowan, Shen & 
Bedzyk, 1989) are readily determined from boundary 
conditions at the surface and dispersion relations. 

Evaluating I = D ' D ,  we obtain 

I [Eo,~ 2d~+Eo,~E*o~d3+ * * = Eo~, Eot3d3 

+lEo/~ 2d2+ EH,~ 2d~+ En~,E*t3d 3 

+ * • IE~l=d~  E n,~ EH~d 3 + 

+exp ( i l l -  r,)[ Eo,,E*,,d~ + Eo~E*~d3 

+ E o ~ E * . d *  + Eo~E*od2] 

+exp ( i l l  • rll)[E*o,~E~d~ + Eo,~Eu~d3* * 
+ * , Eot3 En..d3 + Eoo EHad2], (11) 

where we define 

d, = exp (2koOg,~z), (12) 

d2 = exp (2koqb~oz) (13) 

and 

d 3 = e x p [ i k o ( ~ * o ~ - ~ o ~ ) z ] = R a e x p ( i v 3 ) .  (14) 

Expressions (12), (13) and (14) contain the entire 
depth dependence of the intensity. 

We also define the first term in brackets in (11) as 
a complex number Vo = Ro exp (ivo). By expanding 
the fields into their complex parts we obtain 

I = IEo~ 12d, + ]Eo~lZd2 + ]EH~I~d, + ]EH0 ]~d2 

+ 2 I"1 R3 cos  v3 + 2 T 2 R  3 sin v3 

+ 2R0 cos (Vo+ H-  rll), (15) 

where 

TI = ~ ,  ~ ,  _t_ ~"  r;, ..t- E H,~E H~ • -- o,~,-- o~ -- ,-- o,~,-- o~ - E ~,~ E ~ + " " (16) 

and 

- - En~E'n~. (17) T2 = ~ t  ~ , ,  ~ , ,  ~ ,  • -.o,~,-.o~ ~o~,,-,o~+E'I-t~,E~ " 

To calculate a yield, we start by assuming again a 
distribution of atoms in two dimensions at a constant 
distance z > 0 beneath the surface. With the coherent 
fraction and coherent position defined as before, the 
fluorescence yield takes the form 

Y = e x p  (-~z){IEool~d, +lEo~12d~+lE.ol=d, 
+ [E,~]2d2+2T1R3 cos  o 3 + 2 T 2 R 3  sin v3 

+ 2Rofn  cos (Vo-2¢rp.)}, (18) 

where 

v3 = [ko(a~,~-  ~ L ) z ]  (19) 

and/x is the escape length of the fluorescent radiation 
or Auger electron being observed. 

Expression (18) for a layer at depth z is seen to 
have the usual standing-wave appearance, with some 
added features. The expressions in v3 incorporate the 
vertical Pendell6sung due to the interference between 
the internal fields generated by the a and/3 branches. 

For the case where impurities are distributed 
homogeneously throughout the crystal or where we 
are looking at fluorescence from the lattice itself, 
(12)-(14) may be integrated over all z with the 
exponential factor that contains the escape length of 
the fluorescence radiation. If we assume that the 
detector sees fluorescent radiation, Auger electrons 
etc. leaving the surface primarily in the normal direc- 
tion, the expressions in (18) may be replaced by 

d, = (p. - 2koq~#,~)-', (20) 

d2 = (/x - 2ko~o)  - '  (21) 

and 

R3 c o s  v3 = [~z - ~ ( ¢ , L  + ¢'g,)]  

x {[~ - ~ ( ¢ . L  + ¢ .~)]2  

+ [ko(qb&~ - @~,~)]2} - '  , (22) 

R3 sin v3 = ko(q~,t3 - q)~,,~) 

x {[~ - ~ ( ¢ . L  + ¢'~o)] 2 

+ [ko(qb~o - ~,,)]2} - '  . (23) 

3. Experimental 

To test the calculations, we carried out a series of 
XSW measurements at the Cornell High Energy Syn- 
chrotron Source (CHESS). The sample consisted of 
iodine chemisorbed on the (111) surface of Ge. We 
observed the diffraction from a (2ft.0) plane normal 
to the surface with a monochromatic X-ray beam at 
an energy of 5.98 keV. The experimental configur- 
ation, including the manner of monochromating and 
collimating the X-ray beam, has been described pre- 
viously (Jach, Cowan, Shen & Bedzyk, 1989; Jach & 
Bedzyk, 1990). The experiment consisted in monitor- 
ing the specularly reflected beam flux, the diffracted- 



TERRENCE JACH AND M. J. BEDZYK 349 

reflected beam flux, the Ge L fluorescence at 1.18- 
1.22 keV and the I L fluorescence at 3.93-4.80 keV. 

4. Results and analysis 

Figs. 2(a)-( i )  summarize the results for angles of 
incidence q~ that are considerably below the critical 
angle (a-c), near the critical angle (d-f) and con- 
siderably above the critical angle (g-i). A consider- 
able difference is observed in the fluorescence yield 
between the I fluorescence and the Ge fluorescence. 

The fitting procedure followed was similar to Bragg 
diffraction XSW. In this case, the specular beam was 
fitted in Figs. 2(a), (d), (g) to obtain first-order 
corrections to the diffraction-angle scale and the angle 
of incidence. Using the corrected values, we fitted the 
I fluorescence yield according to (7) and the Ge 
fluorescence yield according to (18)-(23) to obtain 
the coherent fraction f (+0.05) and the coherent 
position p (+0.04). A value of z = -2.86 J, (above the 
surface), obtained from Bragg XSW measurements 
(Bedzyk, Shen, O'Keeffe, Navrotski & Berman, 1989), 
was used for the height above the (111) diffraction 
plane of the I chemisorbed atoms. 

The structure factor of Ge was calculated using a 
centrosymmetric origin. Consequently, p = 0.0 corre- 
sponds to an atom that is located in a (22.0) diffraction 
plane. Of the three possible sites in this diffraction 
plane (above, T4 or H3), the 'above' site is the only 

one consistent with the z position obtained indepen- 
dently. 

The fitted parameters obtained in Figs. 2(b), (e), 
(h) and 2(c), ( f ) ,  (i) demonstrate the validity of the 
standing-wave expressions under a wide variety of 
diffraction conditions and fluorescence dependence. 
Unlike the Bragg XSW case, the standing wave here 
never goes completely from a pure a-branch (anti- 
node on diffraction plane) solution to the pure /3- 
branch (node on diffraction plane) solution and the 
linear combination depends on the angle of incidence 
~o. The integrated bulk Ge fluorescence that is ob- 
served is markedly different from the I fluorescence 
for atoms in the same diffraction plane. This illustrates 
our theoretical observation that the rapid variation 
of the standing-wave amplitude parallel to the surface 
is accompanied by a depth variation that changes 
with angle. This could, in principle, be used to obtain 
the depth of a layer of impurity atoms beneath the 
surface. Our expressions for the integrated bulk 
fluorescence of Ge are also consistent with the 
observations of Hashizume & Sakata (1989). 

Slight differences in the fitted coherent positions 
between different angles q~ as well as between the 
overlayer and substrate are attributed to the contami- 
nation of the incident beam with harmonic radiation, 
which was above the Ge K edge. The strong attenu- 
ation of the observed Ge L fluorescence radiation 
under the experimental conditions made it difficult 
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Fig. 2. (a), (d), (g) Specular and diffracted beam flux; (b), (e), (h) I fluorescence; (c), (f), (i) Ge fluorescence; for (a), (b), (c) 
40 = 5.21; (d), (e), (f) 40 = 6.95; (g), (h), (i) ~0 = 7.43 mrad. The error bars take account of counting statistics only; error limits on 
the fits are given in the text. 



350 X-RAY STANDING WAVES AT GRAZING ANGLES 

to compensate accurately for this spurious com- 
ponent, which was small in any case. A second source 
of error could be due to the assumption of an abrupt 
discontinuous step in the dielectric susceptibilities 
Xo, X220 at z = 0 (Batterman & Cole, 1964). A more 
accurate approximation for the fields near the surface 
would take into account the electron density for an 
actual crystal surface and perhaps even the presence 
of the chemisorbed species and surface roughness as 
well. 

Although the sample was prepared chemically and 
thereafter kept in an inert He atmosphere, the coher- 
ent fraction was observed to degrade as a function 
of time. 

In summary, we have obtained expressions that 
parametrize glancing-angle X-ray standing-wave 
fluorescence yields in the same manner as X-ray 
standing waves created in the Bragg geometry. The 
expressions permit fitting the fluorescent intensity 
from atoms above or below the surface of a crystal 
to obtain the coherent position of the atoms parallel 
to the surface and their coherent fraction. The fluores- 
cence yield includes a dependence on the distance of 
the atoms from the surface because of a changing 
extinction of the wave fields above and below the 
surface. 
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Abstract 

A diffraction ratio is proposed that predicts the 
differences to be expected between the intensities of 
two-isomorphous data sets. This ratio is important 
for the ab initio structure determination of isomor- 
phously related structures by means of direct 
methods. The diffraction ratio is shown to be linearly 
related tO the average doublet phase sum of the 
isomorphous data. It is argued that the doublets are 
essential for correct triplet-phase-sum estimates. The 

0108-7673/93/020350-09506.00 

diffraction ratio and the idealized average triplet- 
phase-sum error, as calculated from a recent prob- 
abilistic theory, turn out to be related. A minimum 
diffraction ratio is required to obtain a triplet-phase- 
sum-error level comparable with that of small struc- 
tures that are solved routinely by conventional direct 
methods. The diffraction ratio can be used to maxi- 
mize the triplet-phase-sum reliability before collect- 
ing the data by choosing the optimal wavelength in 
a single anomalous-scattering experiment, selecting 
the most suitable heavy-atom derivative in a single- 
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