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Fresnel theory is used to derive the complex electric fields above and
below an X-ray– reflecting interface that separates two materials with
differing refraction indices. The interference between the incident and
reflected waves produces an X-ray standing wave (XSW) above the
reflecting interface. The XSW intensity modulation is strongly enhanced
by the total external reflection condition, which occurs at incident angles
less than the critical angle. At these small milliradian incident angles, the
XSW period (λ/2θ) becomes very large, which makes the TR-XSW an
ideal probe for studying low-density structures that extend 1 to 1000 nm
above the reflecting interface.

5.1. Introduction

The original (and most widely used) method for generating an X-ray 
standing wave (XSW) has been to use dynamical diffraction from a perfect 
single crystal in a Bragg reflection geometry.1−3 However, as with any 
standing wave phenomena, the minimum requirement is the superposition of 
two coherently coupled plane waves. Therefore, one can imagine several 
alternative geometries for generating an XSW. This chapter discusses the 
case of generating an XSW by total external reflection from an X-ray mirror 
surface.4
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Fig. 5.1. Illustration of XSW generated by interference between incident and specular
reflected plane waves.

Referring to Fig. 5.1, the primary distinguishing feature for the total-
reflection (TR) case is that the length of the XSW period above the
mirror surface,

D =
λ

2 sin θ
=

2π

Q
, (5.1)

is much longer, since TR occurs at very small incident angles, θ. Also, the
length of the XSW period, D, will continuously decrease as θ increases
through the range of TR. This long-period XSW is ideally suited
for measuring surfaces, interfaces, and supported nanostructures with
structural features that range from 50 to 2000 Å. Examples include studies
of Langmuir–Blodgett (LB) multilayers,4−7 layer-by-layer self-assembly of
metal–organic films,8,9 the diffuse double-layer formation at the electrified
water/solid interface,10,11 biofilm ion adsorption,12 and metal nanoparticle
dispersion in polymer films.13,14

5.2. X-Ray Transmission and Reflection
at a Single Interface

Based on Maxwell’s equations, an electromagnetic traveling plane-wave
impinging on a boundary separating two different refractive media, splits
into a reflected and transmitted (or refracted) plane-wave.15 At X-ray
frequencies, the index of refraction,

nj = 1 − δj − iβj (5.2)

is less than unity and therefore (as illustrated in Fig. 5.2) the angle of
refraction, θ2, is less than the incident angle, θ1.16 Parameters δj and βj ,
which account, respectively, for refraction and absorption effects by the
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Fig. 5.2. The σ-polarization case for the reflection and refraction of X-rays at a
boundary separating two media with indices of refraction n1 > n2.

jth medium, can be expressed as:

δ = −1
2
χ′

0 =
reλ

2

2π
N ′

e, (5.3)

β = −1
2
χ

′′
0 =

λµ0

4π
, (5.4)

where N ′
e is the real part of the effective electron density.

The E-fields associated with the incident, reflected, and transmitted
plane-waves are expressed respectively as:

ε̄1(r, t) = E1 exp(−i(k1 • r − ωt)) (5.5a)

ε̄R
1
(r, t) = ER

1
exp(−i(kR

1
• r − ωt)) (5.5b)

ε̄2(r, t) = E2 exp(−i(k2 • r − ωt)) (5.5c)

At z = 0, the space and time variations of all three fields must be equivalent.
This produces the “law of co-planarity,” which requires the transmitted and
reflected wave-vectors, k2 and kR

1 , to be confined to the same plane as the
incident wave-vector, k1 (the xz -plane in Fig. 5.2). The continuity of the
tangential components of the three wave-vectors at the boundary dictates
the kinematical properties corresponding to the “law of reflection” θR

1 = θ1

and the “law of refraction” (Snell’s Law) n2 cos θ2 = n1 cos θ1. Using these
relationships the spatial components in Eq. (5.5) can be expressed as:

k1 • r = k1(x cos θ1 − z sin θ1) (5.6a)

kR
1 • r = k1(x cos θ1 + z sin θ1) (5.6b)

k2 • r =
n2

n1
k1


x

n1

n2
cos θ1 − z

√
1 −

(
n1

n2
cos θ1

)2

 (5.6c)
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Total reflection occurs when the transmitted plane-wave ε̄2(r, t) pro-
pagates strictly in the x-direction and is attenuated in the inward negative
z-direction. From Eqs. (5.5c) and (5.6c), TR occurs when θ1 < θC . For
n1 = 1 (e.g., vacuum or air) and n2 = 1 − δ − iβ, the critical angle16 is

θC =
√

2δ. (5.7)

The scattering vector at the critical angle is

Qc = 4π sin θc/λ ∼= 4πθc/λ = 4
√

πreN ′
e. (5.8)

If dispersion corrections are ignored, N ′
e = Ne. and Qc becomes a

wavelength-independent property, in which case, Qc = 0.0315Å−1 for Si
and Qc = 0.0812Å−1 for Au.

The continuity of the tangential components of the E-fields and
magnetic-fields at the z = 0 boundary dictates the dynamical properties
of the fields, corresponding to the Fresnel equations, which for the
σ-polarization case and for small angles θ1 can be expressed as

FR
1,2 =

ER
1

E1
=

∣∣∣∣ER
1

E1

∣∣∣∣ eiv =
q −

√
q2 − 1 − ib

q +
√

q2 − 1 − ib
(5.9)

FT
1,2 =

E2

E1
=

2q

q +
√

q2 − 1 − ib
, (5.10)

where the normalized angle q = θ1/θC = Q/Qc and b = β/δ for the case of
n1 = 1 and n2 = 1 − δ − iβ. At λ = 0.71Å, b = 0.005 for Si and b = 0.1
for Au.

Figure 5.3 shows the q dependence of the reflectivity, R = |FR
1,2|2, the

normalized E-field intensity at the surface, Iz=0 = |FT
1,2|2, the phase of

the reflected plane-wave relative to the phase of the incident at z = 0,
v = Arg(FR

1,2), and the penetration depth

Λ = 1/µe =
[
Qc Re

[√
1 − q2 + ib

]]−1

. (5.11)

As can be seen, TR occurs for q < 1, where the reflectivity approaches
unity, the phase shifts by π radians, and E-field intensity below the surface
forms an evanescent wave17 with a penetration depth approaching Q−1

c ,
which is 32 Å for Si and 12 Å for Au. For q increasing above unity, the
reflectivity quickly reduces (approaching zero) and the transmitted wave
propagates into the medium with a penetration depth quickly approaching
the normal absorption process, where Λ = sin θ/µ0.
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Fig. 5.3. The Fresnel theory calculated, normalized-angular dependence of the (a)

reflectivity (solid lines) and normalized penetration depth (dashed lines) and (b) phase

(solid lines) and normalized surface E-filed intensity (dashed lines). The black colored
curves are for the weak absorption-case of b = 0 .005 and the red curves are for b = 0 .1.

An equivalent expression for the complex reflectivity amplitude of
Eq. (5.9) can be derived from dynamical diffraction theory by solving the
symmetric zeroth-order Bragg diffraction condition, i.e., set the structure
factor FH = F0 in the expression for angle parameter η. This equivalence
is simply due to the fact that TR is the zeroth-order dynamical Bragg
diffraction condition, where the d-spacing is infinite.

5.3. The E-Field Intensity

The total E-field in the vacuum (or air) above the mirror surface, where the
incident and reflected plane waves are coherently coupled by Q = kR

1 −k1,
is expressed as ε̄T = ε̄1 + ε̄R

1 , and below the mirror surface, ε̄T = ε̄2. The
E-field intensity, I = |ε̄T |2, can then be expressed as

I(θ, z) = I0




1 + R + 2
√

R cos(v − Qz), for z ≥ 0

|FT
1,2|2 exp(−µe|z|), for z ≤ 0

, (5.12)
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where I0 = |E1|2 is the intensity of the incident plane wave and µe is the
effective linear absorption coefficient defined in Eq. (5.11). As can be seen
in Fig. 5.4, the E-field intensity under the TR condition exhibits a standing
wave above the mirror surface with a period D = 2π/Q and an evanescent
wave below the surface. The height coordinate in Fig. 5.4 is normalized
to the critical period Dc = 2π/Qc, which is 199 Å for Si and 77 Å for Au
(if ∆f ′′ = ∆f ′ = 0).

As can be seen from Figs. 5.3 and 5.4, at q = 0, there is a node in the
E-field intensity at the mirror surface and the first antinode is at infinity.
As q increases, that first antinode moves inward and reaches the mirror
surface at q = 1. This inward movement of the first antinode, which is
analogous to the Bragg diffraction case, is due to the π phase-shift depicted
in Fig. 5.3(b). The other XSW antinodes follow the first antinode with a
decreasing period of D = 2π/Q. For q increasing above unity, the XSW
phase is fixed, the period D continues to contract, and the XSW amplitude
drops off dramatically.

Fig. 5.4. The normalized-height dependence of the normalized E-field intensity for
different normalized incident angle q. An XSW exists above the mirror surface and an
evanescent wave exists below the surface for q < 1. The calculations is for the case of
b = 0.1 in Eq. (5.12).
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5.4. X-Ray Fluorescence Yield from an Atomic Layer within
a Thin Film

The q dependence for the normalized E-field intensity at z = 0 is shown
in Fig. 5.3(b). Figure 5.5 shows the Eq. (5.12) calculation for the two
additional heights above the surface. These three curves illustrate the basis
for the TR-XSW technique as a positional probe, since (in the dipole
approximation for the photo-effect) the XRF yield, Y (q), from an atomic-
layer at a discrete height z will follow such a curve. Note that in the TR
range, 0 < q < 1, the number of modulations in the E-field intensity is
equivalent to z/Dc +(1/2). The extra 1/2 modulation is due to the π phase
shift shown in Fig. 5.3(b). Therefore, for an XRF-marker atom layer within
a low-density film on a high-density mirror, the atomic layer height can
be quickly approximated by counting the number of modulations in the
XRF yield that occur between the film critical angle and the mirror critical
angle. Referring to Fig. 5.6, this effect can be seen in the experimental
results and analysis for the case of a Zn atomic layer trapped at the topmost
bilayer of a 1000-Å-thick LB multilayer that was deposited on a gold mirror.
There are 111/2 Zn Kα XRF modulations as the incident angle is advanced
over this range, indicating that the Zn layer is at a height of 11 critical
periods (or 900 Å) above the gold surface. From the simultaneously collected
reflectivity shown in Fig. 5.6, the critical angles for the LB film and
Au mirror are at 2.15 and 7.52 mrad, respectively. A more rigorously
determined Zn atomic distribution profile, ρ(z), is determined by a fit of

Fig. 5.5. The normalized-angle dependence of the normalized E-field intensity for two
different heights above the mirror surface. The calculations are for the case of b = 0.005
in Eq. (5.12). The critical period DC = 199 Å for Si and 77 Å for Au.
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Fig. 5.6. The experimental and theoretical reflectivity and Zn kα XRF yield versus
incident angle at λ = 1.215 Å from a LB multilayer-coated gold mirror depicted in the
inset. From the reflectivity fit, the film thickness is measured to be tF = 934 Å and the

interface roughness σ1 = 3 Å. From the XSW Zn yield fit with a modeled Zn Gaussian
distribution, 〈z〉 = 917 Å and σZn = 15 Å (FWHM = 35.3 Å). The data deviation from
theory for θ < 2 mrad is due to x-ray footprint geometrical effects. See Ref. 5, for details
from a similar measurement on a similar sample.

the modeled XRF yield Y (θ) =
∫

ρ(z)I(θ, z)dz to the data in Fig. 5.6,
where the E-field intensity I(θ, z) within the refracting (and absorbing)
film was calculated by an extension of Parratt’s recursion formulation18

described in the section entitled “XSW in Multilayers” (Chapter 7). This
same model described in the inset was also used to generate a fit to the
reflectivity data (Fig. 5.6), which is independently sensitive to the density
and thickness of the film and the widths of the interfaces. The very sharp
drop in the reflectivity at the film critical angle (2.15mrad) is due to the
excitation of the first mode of a resonant cavity that was observed to
produce a 20-fold enhancement in the E-field intensity at the center of the
film.19

5.5. Fourier Inversion for a Direct Determination of ρ(z )

Similar to the Bragg diffraction XSW case (see the section entitled “XSW
Imaging”, Chap. 14), the TR-XSW XRF yield is also directly linked to
the Fourier transform of the atomic distribution. In this case, however, the
Fourier transform is measured at low-Q, over a continuous range in Q and
only in the Qz direction. This section describes how the Fourier transform
can be extracted from the TR-XSW data to produce a model-independent
measure of the atomic distribution profile, ρ(z).
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To account for the refraction and absorption effects that will influence
the observed reflectivity and XRF yields from a film-coated mirror, the
earlier described two-layer model (Fig. 5.2) needs to be replaced by a three-
layer model (or double interface model) formed by vacuum (the j = 1 layer),
a thin low-density film (j = 2), and a higher-density mirror (j = 3). The

6   j = 2 film/mirror interface is at z =  0  and the j = 1 vacuum/film interface
is at z = tF . For the present case study, δ1 = β1 = 0, δ2 << δ3, and β2 <<

β3 << δ3. For the Fig. 5.6 example of 1.215 ̊A X-rays reflecting from a gold 
mirror coated with a LB multilayer, δ2 = 2 .31 × 10−6, δ3 = 2 .83 × 10−5, 
β2 = 1 .90 × 10−9, β3 = 1 .96 × 10−6, θc,2 = 2 .15 mrad, θc,3 = 7 .52 mrad. 
At θ1 = θc,3, the XSW period is 80.8 A˚ in the vacuum and 84.2 A˚ inside 
the LB film.

TR exists at the interface above the jth layer when θ1 < θc,j = (2δj)1/2.
When θ1 > θc,2, a refracted (or transmitted) traveling wave penetrates
through the film and is reflected from the mirror surface. The total E-field
intensity within the film is then described as

IT
2 (q2, Z) = I2(q2, Z) + IR

2 (q2, Z) + 2
√

I2(q2, Z) IR
2 (q2, Z)

× cos(v2(q2) − 2πq2Z), (5.13)

where I2 and IR
2 are the respective intensities of the incident (transmitted)

and reflected plane waves that form an interference field within the film.
The refraction-corrected normalized angle (or normalized scattering vector)
within the film is defined as

q2 = Q2/Qc,2 =
(
θ2
1 − θ2

c,2

)1/2(
θ2

c,3 − θ2
c,2

)−1/2
. (5.14)

Here Z is the normalized height above the mirror surface in units of the
refraction corrected critical period. Namely, Z = z/Dc,2, where Dc,2 =
λ1/(2θc,3)/(1 − (1/2) δ2/δ3). The use of generalized coordinates q2 and Z

makes the description independent of wavelength and index of refraction.
The phase of the reflected plane wave relative to the incident at z = Z = 0
is expressed as v2. Based on the dipole approximation for the photoelectric
effect, the fluorescence yield from a normalized atomic distribution ρ(Z)
within the film is

Y (q2) =
∫ t′F

0

IT
2 (q2, Z) ρ(Z) dZ, (5.15)

where t′F = tF /DC,2 is the normalized film thickness.
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Weakly Absorbing Film Approximation: If the attenuation depth of
I2 and IR

2 within the film is large in comparison to the spread 〈Z2〉1/2 of
ρ(Z), then Eq. (5.15) can be simplified, so that the yield for a normalized
incident intensity and normalized distribution is expressed as

Y (q2) = I2(q2, 〈Z〉) + IR
2 (q2, 〈Z〉)

+ 2
√

I2(q2, 〈Z〉)IR
2 (q2, 〈Z〉)y(q2), (5.16)

where the modulation in the yield due to the interference fringe field is

y(q2) =
∫ t′F

0

ρ(Z) cos(v2(q2) − 2πq2Z)dZ. (5.17)

Since I2(q2, 〈Z〉) and IR
2 (q2, 〈Z〉) can be calculated from Parratt’s recursion

formulation, this reduced yield, y(q2), can be extracted from the measured
yield Y (q). Figure 5.7 shows this for the yield data shown in Fig. 5.6.
The inverse Fourier transform of this reduced yield can be directly used
to generate the fluorescence selected atom distribution ρ(z) to within a
resolving limit defined by the range of Q over which the visibility of the
interference fringes is significant.

Linear Phase Approximation: If the phase v2 were zero in Eq. (5.17),
y(q2) would simply be the real part of the Fourier transform of ρ(Z). Based

Fig. 5.7. The reduced yield that was extracted from the Zn XRF yield data in Fig. 5.6 . See 
Eqs. (5.16) and (5.17). The line connecting data points is drawn to guide the eye. The 
oscillation period and envelop width are inversely related to the mean height and intrinsic 
width, respectively, of the Zn distribution profile.
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on Fresnel theory for the case of no absorption (β = 0) the phase is

v2(q2) =

{
cos−1(2q2

2 − 1), for 0 ≤ q2 < 1

0, for q2 ≥ 1
. (5.18)

As can be seen in Fig. 5.3(b), v can be reasonably approximated by a linear
function in the TR region as: v(q) ∼ (1 − q)π, for 0 ≤ q < 1. Introducing
this approximation into Eq. (5.17), simplifies the expression for the reduced
yield to

y(q2) =




−
∫ 1

0

ρ(Z) cos[2πq2(Z + 1/2)]dZ, for 0 ≤ q2 < 1

∫ 1

0

ρ(Z) cos[2πq2Z]dZ, for q2 ≥ 1

. (5.19)

The atomic density profile can then be directly generated from the TR-
XSW data as

ρ(Z) =
∑
q2>0

s(q2)y(q2) cos[2πq2(Z + δ(q2))]∆q2, (5.20)

where s = −1 and δ = 1/2 for 0 < q2 < 1 and s = 1 and δ = 0 for
q2 > 1. In Fig. 5.8 this is illustrated for the data in Figs. 5.6 and 5.7.
The resolution for this model-independent Fourier inversion of this data is

11 π/Q2,max = 25 Å. The precision for the height and width of a Gaussian
model fit to this type of data is typically ±2 to ±5 Å (see Refs. 4 and 5).

5.6. The Effect of Coherence on X-Ray Interference Fringe
Visibility

If the spatial and temporal coherence properties of the incident photon
beam are well known, the TR-XSW observation described above can be
used to determine the spatial distribution of the fluorescent atom species
within the film. Conversely, if the spatial distribution of the fluorescent
atomic species is known, the observation of the X-ray interference fringes
can be used to characterize the longitudinal and transverse coherence
lengths of the incident photon beam. This is demonstrated in Fig. 5.9,
where three separate TR-XSW measurements are taken with three different
longitudinal coherence lengths (LL = λ2/∆λ) of the same LB multilayer
structure described in the inset of Fig. 5.6. The fringe visibility, as observed
by the Zn Kα fluorescence, is not affected by a reduction in LL until
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Fig. 5.8. The Zn distribution profile directly generated by the Fourier inversion of the
reduced Zn Kα XRF yield data from Fig. 5.7. The summation in Eq. (5.20) was for data
in the range 0.09 < q2 < 1.91. The peak at Z = 10.8 or z = 909 Å has a FWHM = 43 Å.

This corresponds to the convolution of the intrinsic width (35 Å) with the resolution
width (25 Å). The truncation-error oscillations have a period of 50 Å corresponding to
an effective Q2 range of 0.13 Å−1.

the optical path-length difference (in units of λ) between the two beams 
at the Zn height (expressed as Q2〈z〉/2π) approaches the value of the 
monochromaticity, λ/∆λ. Referring to Fig. 5.10, the optical path-length 
difference is n(BC − AC) = n(2z sin θ). In Fig. 5.9, the top curve 
(identical to Fig. 5.6) corresponds to a nearly ideal plane wave condition 
produced by using a Si(111) monochromator. The lower two curves 
correspond to much wider band-pass incident beams that were prepared 
by Bragg diffraction from two different multilayer monochromators (Si/Mo 
and C/Rh).

A reduction in the interference fringe visibility due to a limited
transverse coherence should not occur if the transverse coherence length
LT >> z. Therefore, in consideration of typical longitudinal and transverse
coherence lengths at third generation SR undulator beamlines, the
TR-XSW method that uses 1–Å wavelength X-rays should be extendable
as a probe to a length-scale of 1µm above the mirror surface.

It is worth noting that the reduced yield y(q), as defined in Eqs. (5.16) 
and (5.17) and shown measured in Fig. 5.7 and Fourier inverted in Figs. 5.8 , 
is a measurement of the real part of the degree of coherence Re[γ12].15
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Fig. 5.9. Experimental demonstration of TR-XSW sensitivity to longitudinal coherence (LL). 
The bottom and top curves are the Q2 dependence of the reflectivity (R) and Zn XRF yield 
for the data from Fig. 5.6 that was taken with a Si(111) monochromator. The mean Zn height 
is at z = 917 Å. The lower two XRF yield curves  are from the same sample, but taken with 
Si/Mo and C/Rh multilayer monochromators with reduced monochromaticity (λ/∆λ) and 
therefore reduced longitudinal coherence. The top two curves are vertically offset by 2 and 4 
units, respectively.

Fig. 5.10. Schematic ray diagram used for illustrating coherence effects between the
incident and specular reflected x-ray beams at height z above the mirror surface.
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