"Synchrotron Radiation and Applications, the X-Ray Standing Wave Technique: Principles and Applications" (World Scientific) Ed. J. Zegenhagen and A. Kazimirov, (2013).

June 18, 2012 12:56 The X-ray Standing Wave Technique: Principles and Applications 9inx6in b1281-ch14 1st Reading

Chapter 14

XSW IMAGING

2	Michael J. Bedzyk
3	Departments of Materials Science &
4	Engineering and Physics & Astronomy,
5	Northwestern University, 2220 Campus Dr.,
6	Evanston, IL 60208, USA
7	Argonne National Laboratory,
8	Argonne, IL 60439, USA
9	Paul Fenter
10	Chemical Sciences and Engineering Division,
11	Argonne National Laboratory, 9700 S.
12	Cass Avenue, Argonne, IL 60439, USA
13	The summation of XSW measured <i>hkl</i> Fourier components is used to
14	generate a model-independent real-space map of an XRF-selected atomic
15	distribution. As a demonstration, this Fourier inversion method is used

generate a model-independent real-space map of an XRF-selected atomic
distribution. As a demonstration, this Fourier inversion method is used
to generate a set of 1D maps for a set of naturally occurring impurity
ions within a mica crystal and a 3D map for adsorbed Sn atoms on a
Ge(111) single crystal surface.

¹⁹ 14.1. Introduction

1

²⁰ In the most general sense, XSW probes the partial element-specific ²¹ geometrical structure factor, $\mathcal{F}_{\rm H}$ (in both amplitude and phase), in or above ²² a crystal. As already explained in Chapter 1, $f_{\rm H}$ is the amplitude (also ²³ known as the coherent fraction) and $P_{\rm H}$ is the phase (also known as the ²⁴ coherent position) of the **H**th-order Fourier coefficient of the normalized ²⁵ distribution function^{1,2}:

$$\mathcal{F}_{\rm H} = \int \rho(\mathbf{r}) \exp(2\pi i \mathbf{H} \cdot \mathbf{r}) d\mathbf{r} = f_{\rm H} \exp(2\pi i P_{\rm H}).$$
(14.1)

The X-ray Standing Wave Technique: Principles and Applications

 $\mathbf{2}$

The phase sensitivity of XSW derives from the fact that the detector of the *E*-field is the fluorescent atom itself, lying within the "near-field" where
the X-ray fields coherently interfere. (This is in contrast to conventional
diffraction measurements; where the structure factor phase is lost because
the scattered intensity is detected in the far-field.)

⁶ XSW can therefore be used directly to reconstruct the direct-space ⁷ structure from a set of Fourier coefficients collected in reciprocal space. ⁸ Based on the Fourier inversion of Eq. (14.1), the full time-averaged direct-⁹ space distribution of the atomic-centers, $\rho(\mathbf{r})$, of each fluorescent atomic ¹⁰ species can be synthesized by the discrete Fourier summation^{3,4}:

$$\rho(\mathbf{r}) = \Sigma_{\mathrm{H}} \rho_{\mathrm{H}} = \Sigma_{\mathrm{H}} f_{\mathrm{H}} \exp[2\pi i (P_{\mathrm{H}} - \mathbf{H} \cdot \mathbf{r})]$$

= 1 +2 \sum_{H \neq 0, \, \text{H} \neq -\text{H}} \sum_{f_{\mathrm{H}}} \cos[2\pi (P_{\mathrm{H}} - \mathbf{H} \cdot \mathbf{r})] \qquad (14.2)

¹¹ The above simplification to a summation of cosine terms makes use of ¹² $f_0 = 1$ and the symmetry relationship analogous to Friedel's law that makes ¹³ $f_H = f_{-H}$ and $P_H = -P_{-H}$. This reconstruction of direct-space profiles is ¹⁴ referred to as XSW imaging. The images are obtained without any reference ¹⁵ to model structures, thereby representing in direct-space the information ¹⁶ obtained by measuring the fluorescent yield modulations within the range ¹⁷ of Bragg reflection.

Since the XSW phase is directly linked to the phase of the substrate electronic structure factor,⁵ the Bragg XSW positional information is acquired in the same absolute substrate unit cell coordinate system that was chosen when calculating the X-ray structure factors $F_{\rm H}$.

There are a number of ramifications that derive directly from the fact 22 that the atomic density is determined by discrete Fourier synthesis as 23 described in Eq. (14.2). In particular, the fidelity of the inverted image 24 depends directly on the sampling frequency and the range over which 25 the Fourier components are sampled. In the case of Bragg XSW, the 26 sampling frequency in reciprocal space is limited to the discrete locations 27 corresponding to allowed bulk Bragg reflections. Consequently, the image 28 $\rho(\mathbf{r})$ generated from the XSW measured $f_{\rm H}$ and $P_{\rm H}$ values, is unique only 29 in a volume corresponding to the primitive crystallographic unit cell of the 30 bulk crystal; that is, the derived image is a projection of the full density 31 profile into the unit cell. Consequently, the Bragg-XSW measurement is 32 best-suited to probing structures that are localized over distances that are 33 small with respect to the unit cell size, so that the full distribution can 34 be determined uniquely. The range of reciprocal space over which the set 35

$XSW\ Imaging$

¹ of \mathcal{F}_H values is measured determines the spatial resolution of the XSW ² image. This is evident when considering a one-dimensional reconstruction. ³ The highest spatial frequency of the derived density profile corresponds to ⁴ a period of $d_{\mathrm{H}-\mathrm{max}} = 1/H_{\mathrm{max}}$. In particular, the phase sensitivity of XSW ⁵ allows the two half-periods of the sinusoidal function to be distinguished ⁶ directly, leading to an expected resolution of $\sim 1/2$ $d_{\mathrm{H}-\mathrm{max}}$.

This approach is illustrated by simulating the Fourier synthesis of the diamond crystal structure along the 111 direction. As seen by the two vertical lines in Figs. 14.1(a) and 14.1(b), the 1D projection for this bilayer distribution can be represented by

$$\rho(z) = \frac{1}{2} \left[\delta\left(z + \frac{1}{8}\right) + \delta\left(z - \frac{1}{8}\right) \right], \tag{14.3}$$

¹¹ where z is the 1D unit cell fractional coordinate relative to d_{111} . Using ¹² Eq. (14.1), the Fourier coefficient for this distribution is:

$$\mathcal{F}_{\rm hhh} = \cos(\pi h/4), \tag{14.4}$$

3

which is plotted in Fig. 14.1(c). For this case the Fourier coefficient 13 amplitudes are $f_{000} = f_{444} = f_{888} = 1$, $f_{111} = f_{333} = f_{555} = f_{777} = 1/\sqrt{2}$ 14 and $f_{222} = f_{666} = 0$, and the phases are $P_{111} = P_{777} = P_{888} = 0$ and 15 $P_{333} = P_{444} = P_{555} = \frac{1}{2}$. In Fig. 14.1(a) the individual Fourier components 16 $\rho_{\rm hhh}$ are plotted for h = 0 to 8 and then summed according to Eq. (14.2) 17 to produce the 1D image in Fig. 14.1(b). This simple example provides the 18 essential characteristics of the imaging process by discrete Fourier synthesis. 19 The location of the two halves of the diamond lattice bilayer is clearly 20 resolved in this reconstruction of the density profile, in spite of the fact 21 that maximum of the **H**th contribution to the density does not in general 22 coincide with the locations of the atomic planes. As expected, the resolution 23 in the reconstructed profile (defined as the FWHM of a discrete feature) 24 in a given [hkl] direction is equivalent to one-half of the smallest d-spacing 25 (corresponding to H_{max}) that is included in the summation. In the example, 26 this results in a spatial resolution of $(d_{111}/8)/2 \sim 0.2$ Å, or $\Delta z = 1/16$, as 27 observed in Fig. 14.1(b). Extra oscillations in the reconstructed profile are 28 due to truncating the Fourier sum (effectively assigning zero amplitude 29 to all terms higher than hhh = 888) and will be present so long as the 30 amplitude of the missing Fourier components is non-zero (that is, the actual 31 profile is not "resolved" by the data, but instead has a width limited by 32 H_{max}). Once sufficient data are obtained so that the reconstructed profile 33 is fully resolved by the data then the oscillations due to termination error 34

4

Fig. 14.1. (Continued)

XSW Imaging

5

Fig. 14.1. The 1D Fourier synthesis of Ge along the 111 direction. (a) The 1D spatial-dependence of the *hhh* Fourier-components ρ_{hhh} , h = 0 to 8, for the distribution of Ge atomic-centers in the diamond-cubic structure. Each curve is given a vertical offset of +h. The spatial interval corresponds to the 1D unit cell projected on the 111 direction and thus has a size corresponding to the d_{111} lattice spacing. There are two equally occupied Ge sites at $z = \pm 1/8$ (two vertical lines) based on Eq. (14.3). (b) The calculated 1D image $\rho(z)$ of the centers of the Ge atoms as summed over the terms from hhh = 000 to 888 based on Eq. (14.2). Also shown (as a red line) is the case in which the two delta functions are replaced by two Gaussian functions with $\sigma = 0.03$. (c) The *h* dependence of the Fourier coefficients $F_{\rm hhh}$ for the two delta-function distribution (black line Eq. (14.4)) and two $\sigma = 0.03$ Gaussian function distribution (red line Eq. (14.6)). The curves in (a) can also be used to represent the phase and period of the XSW at the high-angle side ($\eta' < -1$) of the *hhh* Bragg peak for the case of $\Delta f'' = 0$.

are eliminated and the reconstructed profile closely resembles the intrinsic
 profile.

This is illustrated in Fig. 14.1(b), where the curve with strong oscillations was synthesized from the distribution defined by Eq. (14.3) and the curve with damped oscillations was produced by the convolution of this delta-function distribution with a normalized Gaussian function

$$G(z) = \frac{1}{\sigma\sqrt{2\pi}} \exp(-(z\sigma)^2/2)$$
(14.5)

⁷ with $\sigma = 0.03$ (FWHM = 0.071). This results in an increased width (0.094)

due to the convolution of the intrinsic width (0.071) and the resolution
width (0.063). Based on the convolution theorem the Fourier coefficients

10 for this Gaussian bilayer are

$$F_{\rm hhh} = \cos(\pi h/4) \exp(-2(\pi h\sigma)^2),$$
 (14.6)

which is plotted in Fig. 14.1(c). This shows how the higher terms are
damped out. Inclusion of non-collinear Fourier components immediately
allows the *3D* profile to be reconstructed.

This perspective of Fourier synthesis provides a clear demonstration 14 of the information content in an XSW data set. For example, the location 15 (i.e., the phase, indicated by P_{111}) of the wave maximum (see curve 1 in 16 Fig. 14.1(a)) corresponding to $\mathbf{H} = 111$ provides a direct measure of the 17 location of the average density, which is within the lattice bilayer. That 18 the density in the bilayer is distributed is revealed by the reduced coherent 19 fraction, f_{111} . There is, however, no direct (model-independent) information 20 concerning the precise locations of the sub-layers because these layers are 21

6

¹ not resolved at $\mathbf{H} = 111$. Inclusion of additional Fourier components allows ² the two sub-layers to be fully resolved in the reconstructed density image ³ at which point their locations can be directly determined by inspection.

One of the powerful characteristics of this approach is the ability to 4 use this model-independent information (with a typical spatial resolution of ~ 0.5 Å) as both a model-independent starting point and as a conceptual 6 guide for subsequent model-dependent optimization (using parameters 7 to reproduce the measured coherent positions and fractions). This 8 substantially reduces the "guess work" involved in developing the final q structural model as long as a sufficient number of Fourier coefficients are 10 measured. This more standard model-dependent analysis method has a 11 typical structural sensitivity of ~ 0.03 Å. 12

This example also highlights an important subtlety of the XSW-13 imaging method. Due to the diamond lattice structure, the structure factor 14 amplitude is zero for H = 222 and 666 (i.e., these Bragg reflections are 15 "missing"). Since the reconstructed density profile need not have the same 16 symmetry as the diamond lattice (e.g., for surface adsorption profiles), the 17 absence of a Bragg reflection would mean that these Fourier components 18 cannot be measured and would be missing from the Fourier-reconstructed 19 profiles. This can lead to artifacts and consequently it is important that the 20 impact of the actual sampling of the Fourier components be kept in mind 21 in interpreting the reconstructed images. 22

²³ 14.2. 1D Profiling of Lattice Impurity Sites

The usefulness of this approach for directly revealing impurity site 24 distributions was first demonstrated through measurements of impurities in 25 muscovite (i.e., mica).³ Muscovite is a layered silicate with a tetrahedral-26 octahedral-tetrahedral (TOT) sheet structure (with each sheet containing 27 tetrahedrally coordinated Si and Al in the T layers and octahedrally 28 coordinated Al in the O layer), with monovalent cations in the interlayer 29 between TOT sheets to provide charge-balance (Fig. 14.2). The distribution 30 of impurities (i.e., at <1%) cannot be determined directly by X-ray 31 crystallography since they have only a weak affect upon the total electron 32 density. While the local incorporation site might be obtained by EXAFS, 33 the ability of EXAFS to determine the local coordination geometry can be 34 limited when the element is found in multiple sites in a lattice. The use of 35 XSW to directly image the impurity distributions is illustrated in Fig. 14.2.

Fig. 14.2. Mica 1D ionic profiles: (a) Reflectivity and fluorescence modulations for the (002) and (004) reflections for both majority (Al, Si, K) and minority (Ba, Ti, Fe, Mn) elements in muscovite. (See Ref. 3 for the (006) to (0016) data and the measured values of $f_{\rm H}$ and PH.) (b) The derived 1D density profiles obtained by discrete Fourier synthesis of the partial element structure factors as described in Eq. (14.2). The mica crystal structure is shown in (b) scaled so that the atom positions correspond directly with calculated profiles.

1 XSW data for numerous impurities (Mn, Fe, Ti, Ba) are obtained 2 simultaneously through the use of an energy-dispersive XRF detector 3 while exciting the muscovite Bragg reflections. The characteristic XSW 4 modulation of the fluorescent yield is obtained in spite of the fact that 5 muscovite crystals are non-ideal crystals (due to their tendency to bend). 6 By illuminating just a tiny area of the surface with a ~ 20 -µm-sized X-ray 7 beam with a relatively low photon energy of 7 keV, it was however possible 8 to find regions of the crystal where the observed rocking curve width was 9 close to the theoretical value.

The fluorescent modulation for each element was measured for $\mathbf{H} = 00L$ 10 with L = 2 through 16 for L = even (due to the absence of 11 odd-order reflections along 00L). Results for L = 2 and 4 are shown in Fig. 12 14.2(a). These raw XSW data show that the fluorescent yield modulation for 13 Ba follows that of K, while the modulation of Ti, Fe and Mn all follow the 14 behavior of Al. Thus a traditional XSW analysis would conclude that Ba 15 distribution is centered on the interlayer site, while the Ti, Fe and Mn would 16 be centered on the octahedral site (the majority site for Al). 17

8

The derived model-independent elemental profiles obtained by Fourier 1 synthesis are shown in Fig. 14.2(b). Only reflections along [00L] were 2 measured since the height of a cation is sufficient to distinguish the various 3 lattice sites due to the layered nature of the muscovite structure. From the synthesis of the impurity data in Fig. 14.2, it is immediately obvious 5 that Ba is found exclusively at the interlayer site, while Mn, Fe, and Ti are 6 all found in the octahedral site. This information is model-independent, since only the total electron density of the muscovite crystal (i.e., that 8 determined by crystallography) was used in the dynamical X-ray scattering 9 theory calculations of the rocking curves. Also apparent from these model-10 independent density distributions is a significant degree of "ringing" due to 11 an abrupt termination of the experimental data. This suggests that the 12 intrinsic distribution width of each element is narrow with respect to the 13 resolution width $d_{001}/16 = 1.2$ Å. These artifacts could be reduced through 14 the use of "Hanning" windows imposed on the measured coherent fractions, 15 but at some cost of resolution in the images. 16

Although the distribution of the major elements (Si, Al, K) is well 17 established by crystallography, these distributions were well reproduced by 18 the imaging approach showing that no significant artifacts are introduced 19 into the derived density profiles due to the discrete Fourier synthesis, as 20 seen by comparing to the derived profiles to that calculated using the known 21 crystal structure. These data confirm that Si is found only in the tetrahedral 22 site, K is only in the interlayer site, and Al is distributed between 23 tetrahedral and octahedral sites. Other elemental impurities in muscovite 24 (e.g., Na, Rb...) were not imaged either because the X-ray beam energy 25 was too low to excite measurable X-ray fluorescence, or the fluorescent X-26 rays were too low in energy to be measured by the fluorescence detector. 27 Through measurement of the elemental composition (e.g., by X-ray 28 fluorescence), these data provide the site-specific composition of the crystal. 29 We note that it should be possible to obtain the individual profiles of 30 the major elements solely from these XSW data even if the crystal structure 31 were not known a priori. For instance, the K and Al distributions are out 32 phase for L = 2, but in phase for L = 4, with the Al distribution centered 33 on the origin and K displaced by $d_{001}/4$. The modulation amplitude of Al at 34 (004) is reduced with respect to that observed for K suggesting that the Al 35 is distributed unevenly between a majority site near the origin and minority 36 site separated by approximately $d_{001}/8$. In contrast, the (002) modulation 37 of Si has a fluorescence modulation corresponding to $f_{002} = 0$, suggesting 38 that there are two equally occupied Si sites displaced by $d_{001}/4$. The Si 39

XSW Imaging

9

site is displaced by d/4 with respect to the center of the Al distribution
since its (004) fluorescence yield modulation is out of phase with respect to
that for Al. By continuing along these lines and iterating with dynamical
diffraction calculations, it therefore should be possible to determine the
major element distributions within a crystal even when the crystal structure
is unknown.

7 14.3. 3D Map of Surface Adsorbate Atoms

Having demonstrated that XSW imaging works for 1D profiling of impurity
bulk lattice distributions,³ the method was extended to 3D mapping of
adsorbate atoms and ions on single crystal surfaces. Cases included surfaces
prepared by molecular-beam epitaxy,^{6,7} cation and anion adsorption from
solution,^{8,9} atomic-layer deposition,¹⁰ and molecular self-assembly.¹¹

One of the UHV surfaces studied was 1/3 ML of Sn on Ge(111).⁶ This 13 surface exhibits a $(\sqrt{3} \times \sqrt{3})$ R30° to (3×3) reversible phase transition at 14 $T_{\rm C} \sim 210 \, {\rm K}^{12}$ For each of these two surface phases a 3D Sn atomic map 15 was generated by the Eq. (14.2) summation of the (111), (333), (11 $\overline{1}$), 16 and $(33 \ \bar{3})$ XSW measured Fourier components and their 3-fold symmetry 17 equivalents. Figure 14.3 shows the image generated by the $\sqrt{3} \times \sqrt{3}$ room 18 temperature XSW data. The top view is a cut at 2.0 Å above the top of the 19 Ge bilayer and the side view is through the long diagonal of the (1×1) unit 20 cell. In these images, the dark red represents the highest Sn density. The 21 small black circles are added to indicate the bulk-terminated Ge atomic 22 positions. The density oscillations that appear in the image are artifacts 23 due to the truncation of the Fourier summation. This method projects 24 the atomic distribution into the substrate (Ge) crystal primitive unit cell. 25 Thus, if there are two distinct heights in the extended 2D superlattice, their 26 projections will superimpose to form a combined distribution. (STM and/or 27 SXRD are needed to extend beyond the 1×1 .) The resolution along the 28 111 direction corresponds to $1/2 d_{333} = 0.5$ °A. Within this resolution, the 29 Sn distribution shows an elongation along 111. 30

After refinement of the data (based on a T₄ site model), it was determined that two-thirds of the Sn are at 1.85(5)Å and one-third 0.45(5)Å higher. Comparing the XSW results above and below T_C confirmed a previously proposed dynamical fluctuation order-disorder phase transition for this corrugated 2D system.¹³

In general, this Fourier inversion method is of particular importance when a simple atomic position model cannot be easily found that is

10

Fig. 14.3. 2D cuts through the maximum density of the 3D Sn atomic map generated by inserting XSW measured $f_{\rm H}$ and $P_{\rm H}$ into Eq. (14.2) for the $\sqrt{3} \times \sqrt{3}$ phase of 1/3 ML Sn/Ge(111). The top cut corresponds to the Ge(111) 1 × 1 surface unit cell. The Sn maximum is located laterally at the T₄ site, which is directly above the Ge atom in the bottom of the bilayer.

consistent with the set of XSW measured Fourier components. This proved 1 to be the case for a differently prepared $1/3 \,\mathrm{ML} \,\mathrm{Sn/Ge}(111)$ surface. 2 This surface, which was annealed at $573\,\mathrm{K}$ as opposed to $473\,\mathrm{K}$ for the 3 result shown in Fig. 14.3, produced a different set of Fourier coefficients 4 that generated an image with an unexpected (and unwanted) third Sn 5 position corresponding to Sn substituting for Ge in the bottom of the Ge 6 7 bilayer. Because this third Sn position lacked any long-range order, it was undetectable by diffraction (LEED and SXRD). 8

$XSW \ Imaging$

11

As a general principle, XSW imaging (or Fourier inversion) is most powerful when used as the first stage in the XSW analysis process. After producing the model-independent 1/2 -Å-resolution 3D atomic image, a model can then be proposed that is based on the image. This leads to the second XSW analysis stage corresponding to a χ^2 fit of a set of simultaneous equations in which each XSW measured *hkl* Fourier coefficient is equated to the corresponding parameterized coefficient from the model.

$$f_{\rm H} \exp(2\pi i P_{\rm H}) = \sum_{\rm j} c_{\rm j} \exp(i2\pi H \cdot \mathbf{r}_{\rm j}) \exp(-2 < u_{\rm H,j}^2 > d_{\rm H}^{-2}) \qquad (14.7)$$

⁸ The fit parameters are the coordinates \mathbf{r}_{j} , occupation fractions c_{j} ($\Sigma c_{j} = 1$),

⁹ and r.m.s. vibrational amplitudes $(\langle u_{H,j}^2 \rangle^{1/2})$ for each of the model ¹⁰ proposed sites.

11 14.4. Experimental Description

While a general description of the XSW instrumentation and procedures is 12 discussed in Chapter 13, this Fourier inversion approach has some unique 13 requirements with respect to its implementation. An experimental end-14 station used for these studies is shown as a photograph and schematic in 15 Fig. 14.4 and further described in Refs. 14 and 15. The end-station uses 16 two non-dispersive double-bounce silicon post-monochromators with a d-17 spacing typically chosen to closely match that of the selected Bragg planes 18 of the sample. Each of the two rotational stages is equipped with a set 19 of remotely selectable Si (*hhh*), (*hh*0), and (00*h*) channel-cut crystals. The 20 incident beam channel-cut monochromators are used, either individually or 21 in tandem, to tune the X-ray beam dispersion characteristics and optimize 22 the measurement to best match the various Bragg reflections for the sample. 23 More specifically, it is important to optimize the observed fluorescence 24 modulation to improve the experimental sensitivity for measuring a 25 particular Fourier coefficient. The capability of this type of setup to quickly 26 change the λ versus θ emittance function of the post-monochromator for 27 each reflection of the sample is important because the strength or weakness 28 of a substrate Bragg reflection is, in general, unrelated to the importance 29 of that Fourier component to the elemental density profile to be measured. 30 Consequently, all symmetry inequivalent Fourier coefficients extending over 31 the relevant reciprocal space volume should be measured to obtain an 32 image. 33

The X-ray Standing Wave Technique: Principles and Applications

12

(b)

(c)

Fig. 14.4. Experimental system. (a) Side view schematic of the experimental components: four ion chambers (IC) monitor the X-ray flux after the beam is conditioned by the post-monochromator components. Two separate X-Z- θ stages manipulate Si channel-cut monochromators (Si CC1 and Si CC2) in the beam for the purpose of reducing the energy bandpass and angular divergence of the X-rays incident on the sample; (b) Side view image of the post-monochromator components. (c) Image showing up-stream view of the three channel-cut crystals mounted on a torsion-bearing stage (TS) attached to a Huber 410 rotary stage (HS). A piezo actuator (P) uses feedback from the ion chambers to maintain a fixed detuning value for the Si CC monochromators. The horizontal X translation stage at the base of each Si CC stage is used to select which of the three channel cuts intercepts the beam. Taken from Ref. 15.

XSW Imaging

13

¹ 14.5. Conclusion

As shown in this chapter, the Bragg XSW technique can be used to image 2 the 3D real-space distribution of atoms in an element-specific and model-3 independent manner. Due to the limited set of allowed hkl Bragg reflections, the real-space information is limited to the spatial extent of the substrate 5 unit cell. The XSW imaging technique has become a powerful tool especially with the availability of highly brilliant third-generation synchrotron sources. It is particularly well adapted to adsorbate systems, as shown here, or 8 dopants within the unit cell of host lattices as demonstrated by the 1D 9 imaging of naturally occurring trace impurities in mica³ or for 3D imaging of 10 Mn doped GaAs.¹⁶ For nanocrystals grown on the surface of a single crystal 11 substrate, XSW imaging can be used to measure the correlation between the 12 two lattices, nanoparticle and substrate, revealing important parameters for 13 describing the interfacial structure.¹⁷ As described in Chapters 5 and 19, the 14 Fourier inversion of XSW data collected at the zeroth-order Bragg peak (or 15 total external reflection) can be used to produce a model-independent 1D 16 atomic density profile of the extended structure above a mirror surface^{18,19} 17 with a lower-resolution, but longer length-scale; well beyond the reach of 18 this single crystal Bragg XSW method. 19

20 Acknowledgments

Colleagues who contributed to the development and demonstration of these 21 ideas include: Likwan Cheng, John Okasinski, Zhan Zhang, Chang-Yong 22 Kim, Anthony Escuadro, Jeffrey Catalano, Donald Walko, Denis Keane, 23 and Neil Sturchio. The results in Figs. 14.2 and 14.3 were obtained at 24 beamlines 12-ID-D and 5-ID-C, respectively, at the Advanced Photon 25 Source, which is supported by the US Department of Energy. The work was 26 also partially supported by the US National Science Foundation MRSEC 27 Program and the Basic Energy Sciences Geoscience Research Program of 28 the US Department of Energy. 29

30 References

- 1. N. Hertel, G. Materlik and J. Zegenhagen, Z. Phys. B 58 (1985) 199.
- ³² 2. M. J. Bedzyk and G. Materlik, *Phys. Rev. B* **31** (1985) 4110.
- 3. L. Cheng, P. Fenter, M. J. Bedzyk and N. C. Sturchio, *Phys. Rev. Lett.* **90** (2003) 255503.
- 4. M. J. Bedzyk and L. W. Cheng, Rev. Mineral Geochem. 49 (2002) 221.
- ³⁶ 5. M. J. Bedzyk and G. Materlik, *Phys. Rev. B* **32** (1985) 6456.

- 14 The X-ray Standing Wave Technique: Principles and Applications
- 6. J. S. Okasinski, C. Kim, D. A. Walko and M. J. Bedzyk, *Phys. Rev. B* 69
 (2004) 041401.
- 7. A. A. Escuadro, D. M. Goodner, J. S. Okasinski and M. J. Bedzyk, *Phys. Rev. B* 70 (2004) 235416.
- S. Z. Zhang, P. Fenter, L. Cheng, N. C. Sturchio, M. J. Bedzyk, M. L. Machesky
 and D. J. Wesolowski, *Surf. Sci.* 554 (2004) L95.
- J. G. Catalano, Z. Zhang, P. Fenter and M. J. Bedzyk, J. Colloid Interf. Sci.
 297 (2006) 665.
- 9 10. C. Y. Kim, J. W. Elam, M. J. Pellin, D. K. Goswami, S. T. Christensen,
 M. C. Hersam, P. C. Stair and M. J. Bedzyk, *J. Phys. Chem. B* 110 (2006)
 11 12616.
- R. Basu, J.-C. Lin, C.-Y. Kim, M. J. Schmitz, N. L. Yoder, J. A. Kellar,
 M. J. Bedzyk and M. C. Hersam, *Langmuir* 23 (2007) 1905.
- 14 12. J. M. Carpinelli, H. H. Weitering, M. Bartkowiak, R. Stumpf and
 E. W. Plummer, *Phys. Rev. Lett.* **79** (1997) 2859.
- 13. J. Avila, A. Mascaraque, E. G. Michel, M. C. Asensio, G. LeLay, J. Ortega,
 R. Perez and F. Flores, *Phys. Rev. Lett.* 82 (1999) 442.
- 14. D. A. Walko, O. Sakata, P. F. Lyman, T.-L. Lee, B. P. Tinkham,
 J. S. Okasinski, Z. Zhang and M. J. Bedzyk, *AIP Conf. Proc.* **705** (2004)
 1166.
- I. M. J. Bedzyk, P. Fenter, Z. Zhang, L. Cheng, J. S. Okasinski and
 N. C. Sturchio, Synchrotron Radiation News 17 (2004) 5.
- 23 16. T. L. Lee, C. Bihler, W. Schoch, W. Limmer, J. Daeubler, S. Thiess and
- ²⁴ J. Zegenhagen, *Phys. Rev. B* **81** (2010) 235202.
- ²⁵ 17. Z. Feng, A. Kazimirov and M. J. Bedzyk, ACS Nano 5 (2011) 9755.
- ²⁶ 18. M. J. Bedzyk, in *arXiv:0908.2115v1* (2009).
- 27 19. V. Kohli, M. J. Bedzyk and P. Fenter, Phys. Rev. B 81 (2010) 054112.