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Introduction 
The X-ray standing wave (XSW) technique provides an element-specific structural 

probe by using x-ray reflectivity to generate a “two-beam” interference field that in turn 
induces a spatial dependence to the x-ray spectroscopic yields from atoms within the 
field. The XSW technique is primarily used for resolving the atomic-scale structure at 
surfaces, interfaces, and thin films with applications spanning a wide scientific range 
including: materials science, solid-state and soft-condensed-matter physics, 
environmental-chemistry, geochemistry, biochemistry, and electrochemistry. 

As a fundamental wave phenomenon, the superposition of two coherently coupled 
X-ray plane-waves localizes the X-ray intensity into interference fringes of an X-ray 
standing wave (XSW) field (Figure 1). This effect, which is produced by an x-ray 
reflection, makes it possible to attain a periodic structural probe with a length-scale 
equivalent to the XSW period:  

! 

D =
"

2sin#
=
2$

Q

  ,    (1) 

where λ is the X-ray wavelength, 2θ is the scattering angle between the two coherently 
coupled wave vectors KR and K0, and Q is the scattering vector defined as: 

Q = K
R
! K

0
  .      (2) 

Q can also be referred to as the standing wave vector, since it points perpendicular to the 
equal-intensity planes of the XSW and has a magnitude that is the reciprocal of D.  
 
Figure 1. Top: A standing 
wave field formed from the 
superposition of two traveling 
plane waves of wavelength λ 
and intersection angle 
(scattering angle) 2θ. The 
standing wave period is D as 
defined in Eq. 1. Middle: The 
two traveling planes waves 
are represented in reciprocal 
space by wave vectors K0 and 
KR. K0 = KR = 2π/ λ. The 
standing wave is defined by 
standing-wave vector Q 
defined in Eq. 2. Bottom: 
Same as the top, but with a 
larger 2θ angle and therefore 
a smaller period D. 
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This two-beam reflection condition can be produced by: (1) strong Bragg 

diffraction from a single crystal, (2) strong Bragg diffraction from a periodically layered 
synthetic microstructure, (3) total external reflection (TER) from an X-ray mirror, or (4) 
weak kinematical Bragg diffraction from a single-crystal thin film. Single crystal Bragg 
diffraction generates an XSW with a period equivalent to the diffraction plane spacing; 
typically between 0.5 and 10 ångstroms.  Cases (2) and (3) occur at small incident angles 
(θ) (or small Q) and therefore according to Eq. (1) will generate an XSW with a much 
longer period; typically 20 to 2000 ångstroms. An XSW can be used as an element-
specific spatial probe via the photoelectric effect, which can be observed by 
photoelectron, photo-ion, fluorescence, or Auger electron emission.  

The XSW technique is used to investigate bulk-impurity structures in single 
crystals and a wide range of surface, interface, and thin film structures. These include 
semiconductor, metal, and oxide surfaces, electrochemical interfaces, and organic 
membranes. In all cases the XSW phase is directly linked to the substrate reflecting (or 
diffracting) lattice planes or interfaces and can thereby be used to directly determine the 
absolute positions of the selected elements relative to these substrate planes. The 
accessibility of synchrotron radiation sources (with high brightness, energy tunability, 
and linear polarization) dramatically increases the sensitivity and applicability of the 
XSW technique.  

 
X-RAY STANDING WAVES GENERATED BY SINGLE CRYSTAL 
DYNAMICAL BRAGG DIFFRACTION  

An X-ray standing wave generated by single crystal Bragg diffraction can be used 
to determine the 3D lattice location of bulk impurity atoms and surface adsorbates. 
Dynamical diffraction theory, which solves Maxwell’s equations in a periodic dielectric 
with appropriate boundary conditions, is used to describe the fields inside and outside of 
the crystal. 
 
 
 
Figure 2. X-ray standing wave field formed in a 
crystal and above its surface by the interference 
of incident and Bragg-diffracted X-ray plane 
waves. The XSW period is equal to the d-
spacing “d”.  Aligning a XSW nodal (or 
antinodal) plane with an atomic plane will 
minimize (or maximize) the characteristic 
fluorescence yield from that atomic plane.  

θ
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Theory 
Consider the two-beam Bragg diffraction condition, described in Figure 2, where 

the incident and the Bragg-diffracted X-ray plane waves are expressed as: 

    

! 
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Here E0 and EH are the complex E-field amplitudes associated with the incident and 
diffracted X-ray plane-waves; K0 and KH are the respective complex wave vectors inside 
the crystal; and ω  is the X-ray frequency. The two wave vectors are coupled according to 
the Laue condition:  

H = K
H
! K

0
 ,      (4) 

where H = ha *+kb* +lc *  is a reciprocal lattice vector. The scalar equivalent of the Laue 
condition reduces to Bragg's law, ! = 2d

H
sin"

B
, where d

H
 = 2π/|H| is the lattice spacing 

of the H = hkl crystal diffraction planes and !
B
 is the geometrical Bragg angle. The 

interference between the incident and diffracted plane waves results in a standing-wave 
field. The normalized intensity of the total E-field that gives rise to the XSW field is: 
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above  the  surface

; at  depth  z  below  surface,

 (5) 

 
where the reflectivity R is related to the E-field amplitude ratio as: 

R =
E
H

E
0

2

 ,     (6) 

and the XSW phase, v, is identical to the relative phase between the two E-field 
amplitudes, 

! 

E
H

E0

=
E

H

E0

exp(iv)  .    (7) 

From Eq. (1) and (5), one can conclude that for Bragg diffraction the XSW 
periodicity is equal to the lattice d-spacing of the hkl diffraction planes; that is, D = d

H
. 

In the following discussion, we will assume the most common case of σ-polarized 
symmetrical Bragg diffraction from a semi-infinite crystal with 1° < θB < 89°. Figure 2 
shows the case of σ-polarization with the vector directions of the two E-fields pointing 
perpendicular to the scattering plane defined by the two wave vectors. The incident and 
exit angles of the two wave vectors with respect to the surface are equivalent for a 
symmetric reflection.  

From dynamical diffraction theory, the E-field amplitude ratio is defined as: 
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where F
H

 and F
H 

 are the H and –H structure factors, which describe the superposition of 
the coherent x-ray scattering from the N atoms within the unit cell as: 
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where sn(H) = exp(iH.•rn) is the geometrical phase factor for the nth atom located at rn 
relative to the unit cell origin. Dn(H) = exp(-Mn) is the Debye-Waller temperature factor 

for the nth atom. 

! 

n

/

"f  and 

! 

n

//

"f  are the real and imaginary wavelength dependent 

anomalous dispersion corrections to the atomic form factor 

! 

n

0

f (H). 
 
η is the normalized angle parameter defined as: 

! 
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B
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 .  (10) 

In this equation, Δθ = θ - θB is the relative incident angle. ! = (r
e
"
2
) (#V

c
)  is a scaling 

factor, where 

! 

r
e

= 2.818 "10
#5 Å is the classical electron radius and Vc is the volume of 

the unit cell. (To separate the real and the imaginary parts of a complex quantity A, the 
notation 

! 

A = " A +  i " " A  is used, where ! A  and ! ! A  are real quantities.) From Eq. (6-10) it 
can be shown that the reflectivity approaches unity over a very small arc-second angular 
width w, defined as: 
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This is the “Darwin width” of the reflectivity curve or “rocking curve”.  
Using the above dynamical diffraction theory equations (Eq. 7-10), one can show 

that the relative phase, v, of the standing wave field decreases by π radians as the incident 
angle is scanned from the low-angle side to the high-angle side of the rocking curve. 
According to Eq. (5), this causes the standing-wave antinodal planes to move by a 
distance of 12 dH  in the −H direction. Also from Eq. (5), if 

! 

n

//

"f = 0, then R = 1, and the 
intensity at the antinode is four-times the incident intensity, |E0|2, and there is zero 
intensity at the node. The case of I = 4 at the antinode assumes that the field is being 
examined above the surface or at a shallow depth where exp(-µzz) ≈ 1. 

The Darwin width, w, is dependent on both the structure factors and the wavelength 
of the incident X-ray beam. For a typical low-index strong Bragg reflection from a 
inorganic single crystal w is within the range of 5 to 100 microradians (µrad) for X-rays 
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within the range of λ = 0.5 to 2 Å. Figure 3a shows a calculated rocking curve R(η’) and 
the corresponding phase v(η’) for the GaAs (111) Bragg reflection at Eγ = 15 keV. In this 
case, w = 40.7 µrad = 8.39 arc-sec. Semi-empirically, the reflectivity-curve has a FWHM 
= 1.2w.  Referring to the identical R(θ) curve in Fig. 3b, notice that the center of the 
rocking curve is shifted slightly above the geometrical Bragg angle !

B
 by ~34 µrad. This 

shift is the result of refraction at the crystal-air interface. In general, this shift is 
!" = # $ F 

0
/ sin 2"

B
. The asymmetry in the reflectivity curve, namely the further 

diminishing from R = 1 as the angle is increased through the strong Bragg condition, is 
due to the movement of the XSW. On the high-angle side (η’ < -1) the XSW antinodes 
align with the strong x-ray absorption planes in the crystal. (See Figure 4.) Therefore 
absorption is higher than average on the 
high-angle side and weaker on the low-
angle side (η’ > 1) for this case. 

 
Figure 3. (a): The theoretical angle η’ 
dependence of the reflectivity R and XSW phase 
v /2π for the GaAs(111) Bragg reflection at Eγ = 
15 keV. (b): The corresponding theoretical angle 
Δθ dependence of the reflectivity and 
normalized fluorescence yields (Eq. 15) for 
coherent positions P111= 0.0, 0.25, 0.5 and 0.75 
with coherent fraction f111 = 1 and Z(θ) = 1. 
Referring to Figure 4, this calculation has Ga at 
the 0,0,0 and As at the 1/4, 1/4, 1/4  position of the 
cubic zinc blende unit cell. Therefore the P111= 0 
curve is the E-field intensity at the Ga site and 
the P111= 0.75 (or = -0.25) curve is the E-field 
intensity at the As site. The dashed horizontal 
line in (a) represents the phase φ/2π of the 
structure factor. The respective phases of the 
geometrical structure factors for the Ga and As 
sublattices are illustrated with respect to the 
phase scale on the right-hand-side of (a). 
 
 
 
 
Figure 4. A [0-11] projection of the zinc-blende 
GaAs structure showing the [111] projected 
scale for the lattice positions in units of the d111 d-
spacing. The horizontal dashed lines represent the 
phase of the GaAs (111) structure factor at 15 keV. 
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The exponential damping factor in Eq. (5) accounts for attenuation effects within the 
crystal, in which case the effective absorption coefficient is defined as:  
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where 

! 

µ
0

=
2"

#
$F

0

" is the linear absorption coefficient. The second and third terms in Eq. 

(12) account for the extinction effect that strongly limits the X-ray penetration depth 
1/ µ

z
 for a strong Bragg reflection. For example, the penetration depth for 15-keV X-rays 

at the GaAs (111) Bragg reflection goes from 2.62 µm at off-Bragg conditions to 0.290 
µm at the center (η’ = 0)  of the Bragg rocking curve. The general expression for this 
minimum penetration depth or extinction length is: 
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X-ray standing wave photo-effect yields 

The XSW field established inside the crystal and above the crystal surface induces 
photoelectron emission from atoms within the field. The excited ions, in turn, emit 
characteristic fluorescence X-rays and Auger electrons. In the dipole approximation, the 
photoelectric effect cross section is proportional to the E-field intensity at the center of 
the atom. (It is necessary to consider higher-order multi-pole terms in the photoelectric 
cross-section under special conditions; e.g., XSW induced photoemission that is not 
angle-integrated.) For the discussion that follows, we will assume the dipole 
approximation, in which case the normalized X-ray fluorescence yield is defined as: 

  

! 

Y (") = I(",r )  #(r )  exp[$µ
f
(%)& z] dr  ,  (14) 

where !(r )  is the normalized fluorescent atom distribution, and 

! 

µ f (")  is the effective 
absorption coefficient for the emitted fluorescent x-rays which is dependent on their 
takeoff angle, α. Upon integration, the normalized XSW yield is given as: 

! 

Y (" ) = [1+R(" ) + 2 R(" ) f
H

cos(v(" )# 2$P
H

)]  Z (" ) ,  (15)  

where the parameters fH  and P
H

 are the coherent fraction and coherent position, 
respectively. In more general terms, fH  is the amplitude and P

H
is the phase of the Hth-

order Fourier coefficient of the normalized distribution function: 

    

! 

F
H

= "(r )
uc

# exp(iH $r )dr = f
H
exp(2%iP

H
)   .      (16)   

Z(θ) is the effective-thickness factor, which will be discussed below. Z(θ) = 1 for atoms 
above the surface of the crystal and at a depth much less than the extinction length, Z(θ) ~ 
1. 
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Figure 5.  Depiction of a typical XSW experimental setup. The beam from a synchrotron beamline is 
monochromated and collimated by an asymmetrically-cut, grazing incidence, Si single crystal; the second 
(nondispersive) symmetrically-cut Si monochromator crystal is used to return the incident beam to a 
horizontal direction. While stepping the incident angle θ of the sample through the reflection, the reflected 
intensity and fluorescence spectrum are simultaneously collected by two separate detector systems. 
 

Referring to Figure 5, in an XSW experiment, the reflectivity rocking curveR(! )  
and the fluorescence yield Y (!)  are acquired simultaneously while scanning in θ through 
each hkl Bragg reflection of the sample crystal. For each hkl XSW data set, a rocking 
curve calculated according to dynamical diffraction theory and convoluted with the 
emission function of the upstream monochromator is fitted to the experimentally 
measured R(! )  to fix the absolute angle scale. This is then used for fitting the 
convolution of Eq. (15) to the measured Y (!) . From this fit, the coherent fraction fH  and 
the coherent position 

! 

P
H

 are obtained. The off-Bragg yield, which is also obtained from 
the fit to the measured data, is used for overall normalization of the yield, which gives the 
fluorescent atom concentration or surface coverage. In Figure 3b, calculated Y (!)  curves 
are shown for Z(! )  = 1; f111 = 1; and  P111 = 0.0, 0.25, 0.5, and 0.75. These calculated 
curves are for the GaAs (111) reflection at Eγ = 15 keV. The origin of the zinc blende unit 
cell was chosen to coincide with a Ga atom. Referring to Figure 4, the +(111) polarity of 
this noncentrosymmetric crystal structure has Ga at the top of the bilayer and As at the 
bottom. Therefore the P111= 0 curve corresponds to the expected K fluorescence yield for 
Ga atoms and the P111= 0.75 corresponds to that of As K fluorescence. The marked 
change in the angular variation of Y (!)  for each increment of 0.25 in d-spacing is the 
basis for the spatial sensitivity of the Bragg diffraction XSW. If the GaAs(111) wafer 
were to be flipped over, the 

! 

(1 1 1 ) rocking curve would look essentially the same 

(

! 

 F
1 1 1 

 is 1.5% smaller than 

! 

 F
111

 due to anomalous dispersion). However, the Ga 
and As XSW fluorescence yields would be essentially switched around, since the XSW 
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antinodes pass through the Ga atomic layers when scanning in angle through the (111) 
reflection; and pass through the As atomic layers for the 

! 

(1 1 1 ). 
 
Extinction effect and evanescent-wave emission  

The effective-thickness factor Z(! )  in Eq. (15) accounts for the θ dependence of 
the penetration depth of the primary x-ray field (extinction effect) in conjunction with the 
escape depth, Λ, of the out-going secondary fluorescence x-rays. For atoms at the crystal 
surface (e.g., adsorbates) or at a depth much smaller than the extinction depth, the 
effective-thickness factor is constant at Z(! ) = 1 . For atoms evenly distributed throughout 
the semi-infinite crystal: 

! 

Z(") =
µ0(sin"B )

#1 + µ f ($)

µz (") + µ f ($)
 ,      (17) 

where µ
z
(! )  is the effective absorption coefficient of the incident X-rays (Eq. 12) and 

µ f (! )  is the effective absorption coefficient of the outgoing fluorescence X-rays from 
the crystal at takeoff angle α. To achieve surface sensitivity of substrate atoms, it is 
possible to reduce α to a value approaching the critical angle αc of the fluorescence X-
rays. Under such conditions, µ f (! )  dominates over µ

z
(! )  in Eq. (17) and therefore the 

effective thickness factor is constant at Z(θ) = 1. The value of µ f (! )  is dependent on the 
wavelength ! f  of the fluorescence and the index of refraction calculated at λ = λf. The 
index of refraction is: 

n = 1! " ! i#  ,      (18) 

where 

! =
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e
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and N
e
 is the effective electron density of the refractive medium. From the index of 

refraction, µ f (! )  can be obtained as: 

µ f (! ) =
2 2"

# f

(2$ % !
2
)
2
+ 4&

2
+2$ %!

2[ ]
1

2  .       (20) 

At takeoff angles much greater than the critical angle (i.e., 

! 

" >>"
C

= 2#  ), 
µ f = µ 0 / sin! . Below the critical angle refraction effects dominate and the escape depth 

Λ = µ f

!1 approaches 14 (Ne
r
e
)
! 1
2 .  

The evanescent-wave emission effect can be used to remove the extinction effect of 
bulk fluorescence in XSW experiments. This is important, since for ! >> αc, the 
extinction effect tends to dominate over the standing wave effect; causing loss of phase 
(positional) sensitivity.  

 
Structure determination using coherent fraction and coherent position 



Preprint for “X-ray Standing Wave Techniques” M.J. Bedzyk, in Encyclopedia of Condensed Matter 
Physics, edited by F. Bassani, G.L. Liedl, P. Wyder (Elsevier, Oxford, 2005), Vol. 6, p. 330-341. 

 10 

The coherent fraction fH  senses the spread in the spatial distribution of the 
fluorescent atoms. For simplicity, we subdivide fH  into three factors:  

  

! 

f
H

= Ca
H
D

H
 ,     (21) 

where C is the ordered fraction, a
H

 is the geometrical factor, and DH is the Debye-Waller 
factor. All three factors range in value from 0 to 1.  

Consider the general case of a discrete distribution having the same atom located at 
N different unit cell positions 

! 

r j = x ja + y jb + z jc , plus an added random distribution of 
the same atoms. The ordered fraction C is the fraction of the atoms in the distribution that 
are coherent (or are crystallographically registered) with the substrate crystal lattice. If 
the atoms’ occupation fractions for the ordered positions are 

! 

c
1
,  c

2
,…,c

N
, respectively, 

the ordered fraction is: 

! 

C = c j

j=1

N

"  .     (22) 

At this point it is useful to define the normalized geometrical structure factor SH for the 
ordered fluorescent-selected atoms: 

  

! 

S
H

=
1

C
c
j
exp(iH "r

j
)[ ]

j =1

N

#  .   (23) 

The geometrical factor is defined as: 
aH =|SH|     (24) 

 
and the coherent position is defined as: 
 

 PH =Arg[SH]/2π  .      (25) 
 
 Note that the origin for the set of 

! 

r j  (and therefore the origin of P
H

) in the unit cell is the 
same origin that was arbitrarily chosen for generating the structure factor F

H
 used in Eq. 

(8-12). For the simple case of one atomic site, N = 1 , a
H
= 1 , and P

H
 is the projected 

H•r/2π fractional d-spacing position of the atomic site. For the case of two equally 
occupied atom sites the geometrical factor reduces to 

  

! 

a
H

=  cos H " (r
1
#r

2
) /2[ ]   .    (26) 

The coherent position in this case is the averaged fractional d-spacing position of the two 
sites. If the two equally occupied sites have a separation of exactly one-half of a d-
spacing along a particular H, then a

H
= 0  for that particular H. This is analogous to a 

forbidden reflection in crystallography. Again for the case of two sites separated by one-
half of a d-spacing, if the site occupation fractions are 2/3 and 1/3, the geometrical 
fraction will be aH = 1/3 and the coherent position will equal the position of the 2/3 
occupied site. 

In XSW analysis, the Debye-Waller factor DH accounts for the time-averaged 
spatial distribution in the H direction due to thermally induced vibrations of the 
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fluorescence-selected ordered atoms about their average lattice positions. In general, 
individual  DH factors can be assigned to the individual sites. In addition to including the 
dynamic (thermal vibration) distribution, one can also include the static (spatial 
disordering) distribution. Generally, DH can be expressed in terms of the mean-square 
vibrational amplitude along the H direction 

! 

"u
H

2 # , as 

  

! 

D
H

= exp("M ) = exp("2# 2 $u
H

2 % d
H

2
).   (27) 

XSW measurements are not restricted to being made along the surface-normal 
direction (i.e., H perpendicular to the crystal surface). They can be performed with 
respect to any sufficiently strong Bragg reflection of a crystal. A three-dimensional 
triangulation of the atom site can be obtained by combining XSW measurements by using 
three mutually non-collinear diffraction vectors. In triangulating an atomic site, the point 
symmetry of the surface can be used to reduce the number of required XSW 
measurements.  
  
Direct-space imaging 

The XSW measured coherent fraction and position are model-independent and 
correspond to the amplitude fH  and phase

! 

P
H

of the Hth Fourier coefficient of the 
fluorescence-selected atomic distribution. Therefore, based on the Fourier inversion of 
Eq. (16), the distribution !(r )  of each fluorescent atomic species can be synthesized 
directly by the Fourier summation 

  

! 

"(r ) =
H
#"H

=
H
# f

H
exp i(2$P

H
%H &r )[ ] =1+2

H'%H
H'0

# f
H
cos 2$P

H
%H &r[ ]

    .  (28) 

The above simplification to a summation of cosine terms makes use of f0 = 1 and 
the symmetry relationship analogous to Friedel’s law that makes

! 

f
H 

= f
H

 and 

! 

P
H 

= -P
H
. 

Since the summation is limited to allowed bulk reflections, the image ρ(r) generated from 
the XSW measured fH and PH values, is limited to being a projection into the primitive 
unit cell of the bulk crystal. The quality (resolution) of the XSW image will depend on 
the extent in reciprocal space over which the set of fH  and P

H
 values were measured. 

As a simple example consider the Ge diamond-cubic crystal structure (identical to 
zinc blende shown in Figure 4, but with Ga and As replaced by Ge). In Figure 6 the 1D 
projection of the Ge Fourier components ρhhh are plotted over an interval corresponding 
to the d111 1D unit cell and then summed according to Eq. (28) to produce the 1D image. 
The extra oscillations are due to truncating the sum and zeroing all terms higher than 
hhh = 888.  

The resolution of the image in a given [hkl] direction is equivalent to one-half of 
the smallest d-spacing that has been entered into the summation in that direction. This 
imaging method in 3D is especially useful for solving multi-site surface adsorbate phases. 
After this typically 0.5-Å-resolution model-independent analysis step, the measured fH  
and P

H
 values can be used to refine the parameters of a structural model (suggested by 

the imaging method). This previously discussed model-dependent analysis method has a 
typical resolution of 0.03 Å. 
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Figure 6. (a) The 1D spatial-dependence of the 
hhh Fourier-components (ρhhh , h=0 to 8) for the 
distribution of Ge atomic-centers in the diamond-
cubic structure. (Each curve is given a vertical 
offset of +h.) This is identical to the GaAs zinc-
blende structure shown in Figure 4, but with Ga 
and As replaced by Ge. The spatial interval 
corresponds to the 1D unit cell along the [111] 
direction that has a lattice constant 
corresponding to d111 and has two equally 
occupied Ge sites at x = ±1/8 (two vertical lines). 
The h dependence of the amplitude fhhh and phase 
Phhh for each Fourier component is calculated 
from Eqs. (23-26) for the case of C=1 and 
Dhhh=1. In which case fhhh=ahhh=|cos(πh/4)|. This 
makes f000=f444=f888=1,  f111=f333=f555=f777= 1/√2 , 
and  f222=f666=0.   P111=P777=P888=0, and 
P333=P444=P555=1/2. (b) The calculated 1D image 
ρ(x) of Ge atom centers as summed over the terms 
from hhh =000 to 888 based on Eq. (28). The 
curves in (a) can also represent the phase and 
period of the XSW at the high-angle side (η’<-1) 
of the Bragg peak for the case of Δf”=0. 

 
Solution to phase problem 

Unlike conventional diffraction 
methods, the XSW method does not lose 
phase information and can therefore be 
used directly to map the direct-space 
structure from the set of Fourier 
coefficients collected in reciprocal space. 
The XSW measurement does not lose 
phase information, because the detector 
of the E-field is the fluorescent atom itself, lying within the spatial region where the 
fields interfere coherently with each other. In contrast, in conventional diffraction 
measurements the relative phase between the diffracted and incident fields is lost, 
because the intensities of the incident and scattered fields are detected far from this 
region of coherent spatial overlap.  

It should be stressed that the Bragg XSW positional information acquired is in the 
same absolute coordinate system as used for describing the substrate unit cell. This unit 
cell and its origin were previously chosen when the structure factors FH and 

! 

F
H 

 (as 
defined in Eq. 9) were calculated and used in Eqs. (8), (10), and (12). The XSW phase (v) 
is directly linked to the phase (φΗ) of the structure factor. Referring to Figures 3a and 4, 
v asymptotically approaches φ+π at angles well below the strong Bragg condition and v 
approaches φ, far-above. This corresponds precisely to the XSW antinodes shifting 
inward from being halfway between the diffraction planes on the low-angle-side to being 
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coincident with the diffraction planes on the high-angle side. This XSW-antinode-
asymptotic-limit definition for the hkl diffraction planes, defines the diffraction planes as 
coinciding with the maxima of the real-part of the Hth Fourier component of the 
scattering density function, which is expressed as Max{Re[ FH exp(-iH•r) ]}. 
Consequently, the correct values for f0, Δf’ and Δf” must be used to compute the structure 
factor FH in order to assure an accurate determination of the absolute lattice position of an 
impurity or adsorbate atom. This is typically quite straight forward, unless the incident 
energy is near an absorption edge for one of the atoms in the bulk crystal. 
 
“Ideal crystals” vs. “real crystals” in Bragg diffraction XSW 

According to Eq. (11), the intrinsic Darwin width for a typical strong Bragg 
diffraction peak in the reflection geometry is between 5 to 100 µrad. To produce useful 
quantitative information from an XSW measurement, the measured reflectivity curve 
should reasonably match theory. Only a few exceptionally high quality crystals qualify as 
ideal crystals according this criterion, e.g. Si, Ge, GaAs and calcite. Most real single 
crystals contain internal imperfections that result in mosaic spreads that exceed their 
intrinsic Darwin widths. These mosaic spreads can reduce the reflected intensity and 
subsequently smear out the standing wave effect. For these real crystals, the measured 
reflectivity curves cannot be fitted directly by the ideal theoretical reflectivity described 
by Eq. (6). To make the Bragg diffraction XSW technique adaptable to applications on 
real crystals, a number of theoretical and experimental methods have been developed. 
The most formal method is the modification of the XSW theory to include the effect of 
crystal imperfection on Bragg diffraction. On the other hand, one can make XSW 
applications under certain conditions where the stringent requirements of the 
conventional theory are relaxed. One of such condition is when a Bragg reflection occurs 
near the back-reflection geometry, typically when 87° <!

B
< 90° . Under this condition, 

Eq. (11) breaks down, and the intrinsic Darwin width is magnified to milliradians. 
Another condition is when the crystal is very thin; under this condition the kinematical 
theory can replace the dynamical theory in calculating Bragg reflection. Both of these 
special-cases, which will be discussed briefly below, are important alternatives when the 
conventional XSW technique cannot be applied.  

An additional practical method for applying XSW to real crystals takes advantage 
of the high-brilliance of X-ray undulators at third-generation synchrotron sources. With 
such a source, sufficiently high x-ray intensities can be delivered with beams slitted down 
to microns in cross section. Thus making it possible to illuminate one isolated “perfect” 
grain at the sample surface.  

 
The special case of back-reflection XSW 

As just mentioned, one means of circumventing problem of analyzing less-than-
perfect crystals is to use dynamical diffraction at Bragg angles approaching 90°. In this 
back-reflection geometry, the angular Darwin width is measured in milliradians instead 
of microradians. 

For !
B
> 88° , the conventional dynamical diffraction theory breaks down. This is 

due to an approximation in the conventional theory that treats the spherical asymptotes of 
the dispersion surface in reciprocal space as planes. With an extended dynamical 
diffraction theory the Bragg reflectivity and the standing wave E-field intensity can be 
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properly described for 87° <!
B
< 90° . In this regime, the Bragg reflectivity has a much 

smaller energy width and a much broader angle width. For a given d-spacing, the largest 
angle width occurs at a wavelength of 

! 

"
b

= 2d
H
1#

$( % F 
0
# % F 

H
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2
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' 
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+ .  (29) 

In this case, 

! 

" = 4r
e
d
H

2
(#V

c
)
$1. For wavelengths slightly smaller, the angular width can be 

expressed as 

! 

w = "#
y=1
$"#

y=$1
 ,    (30) 

where !"y=1  and !"y=#1  are the angular displacements from 90°  of the low- and high-
angle side of the strong Bragg diffraction condition, respectively. For a symmetric 
reflection,  

  
!"y =±1 = 2(1# sin" B ) +$( % F 0 m % F H )  .    (31) 

The back-reflection XSW (BRXSW) technique has been primarily applied to metal 
and oxide crystals, whose rocking curves typically exhibit angular mosaicity up to ~0.1°. 
BRXSW is mostly used in combination with XPS (rather than XRF) for UHV surface 
science measurements of adsorbed molecules and for site-specific valence-band 
photoemission studies.  
 
The special case of thin-film Bragg diffraction XSW 

The development of Bragg diffraction XSW from thin films is partially driven by 
the fact that many crystals can be grown as high quality µm-thick films but not as large-
size crystals. Similar to Bragg diffraction from a bulk crystal, Bragg diffraction from a 
crystalline thin film also generates an X-ray standing wave field. Because the thickness of 
the film is much less than the extinction depth, kinematical diffraction theory can be used 
as a good approximation to calculate the intensity of the field. The rocking curve angular 
width w~1/N, where N is the atom layer thickness of the film. The analytical procedure is 
fully analogous to that for bulk-reflection XSW. However, the small thickness results in 
very weak peak reflectivity (typically 0.01%) and consequently very weak (typically 1%) 
modulation of the XSW induced fluorescence yield from an atom within or above the 
film. To observe this small modulation above the statistical fluctuation a large number of 
fluorescence counts must be collected at each angle step of the XSW scan. 

 
X-RAY STANDING WAVES GENERATED BY TOTAL EXTERNAL 
REFLECTION 

While a single-crystal XSW provides a high-resolution probe well-suited for 
atomic-scale structural determination, this XSW period is too fine of a scale to profile 
larger, nano structuressuch as the diffuse ion distribution at the solid-liquid interface 
and organic self-assembled multilayers. To extend the XSW technique to the nanoscale 
and beyond, one can employ a long-period XSW generated by total external reflection 
(TER) from a mirror surface or generated by Bragg diffraction from a periodically 
layered synthetic microstructure (LSM). Because the reflection condition in these two 
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cases occurs at much 
smaller angles, the XSW 
period, D, is much longer. 
For TER, in particular, D 
varies from 1 µm to 10 nm 
as θ increases through the 
TER condition.  
 
Figure 7. Under the condition 
of total external reflection from 
an ideal mirror surface with no 
absorption (β = 0): (a) The 
angular dependence of the 
reflectivity R and relative phase 
v of the reflected X-ray plane 
wave (or phase of the XSW 
relative to the mirror surface); 
(b) the angular dependence of 
the normalized E-field intensity 
at the mirror surface (z = 0) 
and at a distance z = 2Dc (= 
160Å for a Au mirror, = 400Å 
for a Si mirror). The inset 
depicts how the XSW field is 
formed above a mirror surface 
by the interference between an 
incident and a specular-
reflected X-ray plane wave. 
 
TER-XSW Theory 

During total external reflection the interference between the incident and the 
specular reflected X-ray plane waves produces an X-ray standing wave above the mirror 
surface (inset to Figure 7).  An evanescent wave is induced below the surface. The nodal 
(and antinodal) planes of this periodic E-field intensity pattern above the surface are 
parallel to the surface and have a variable period of D = ! /(2sin") , as defined in Eq. (1). 
The TER condition occurs between θ = 0 and θ = θc, the critical angle. The 
corresponding XSW period is very long, ranging from D = ∞ to

! 

D = D
c

= " /2#
c
, the 

critical period. From Eq. (19) and !
c
= 2" , the critical period can be written as 

! 

D
c
=
1

2

"

N
e
r
e

 .   (32) 

Aside from small anomalous dispersion effects, the critical period is wavelength 
independent. Dc is a materials property dependent on the electron density, Ne. For a Au 
mirror Dc = 80 Å and for a Si mirror Dc =  200 Å. The directly related critical scattering 
vector is Qc= 2π/Dc. 

This TER condition is in fact the zeroth-order Bragg diffraction condition, or the 
condition when H = 0 and d

H
=! . Therefore, the above derivations from dynamical 

diffraction theory for single crystal Bragg diffraction can be applied to the case of TER 
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by substituting F
0
 for F

H
. In which case, Eq. (10) becomes 

! 

" = # " + i # # " =
$2% 2 + &F

0

&F
0

 ,     (33) 

with the substitutions 

! 

" # =1$ 2x 2 and " " # = 2x
2
y  ,     (34) 

where x = ! /!
c
 is the normalized angle parameter and y = ! /"  is the absorption factor. 

From Eq. (8), the complex E-field amplitude ratio becomes 

! 

ER

E0

= " # ± #2 "1( ) =
x " x

2 "1" iy

x + x
2 "1" iy

=
ER

E0

exp(iv) ,   (35) 

where 

! 

E
R

is the complex amplitude of the reflected plane wave. This amplitude ratio is 
identical to that derived from classical Fresnel theory. For the simple case of no 
absorption, where ! = 0 , the reflectivity is 

! 

R =
E
R

E
0

2

=
1, 0 " x "1

8x
4 # 8x 3 x

2 #1 + 4x x
2 #1 # 8x 2 +1, x >1
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 ,            (36) 

and the phase is 

! 

v =
cos

"1
(2x

2 "1), 0 # x #1

0, x >1

$ 
% 
& 

 .    (37) 

Referring to Figure 7a, the phase at the mirror surface decreases from π to 0 as the 
mirror is tilted through the total reflection condition. Thus, at the mirror surface, where 
z = 0 , the reflected plane wave is completely out of phase with the incident plane wave 
when θ = 0. As the incident angle is increased, the phase decreases smoothly until it is 
completely in phase at ! = !

c
. Therefore, at θ = 0, a standing wave node is at the mirror 

surface, and the first antinode is at infinity. As θ increases, the first antinode moves in 
from infinity toward the mirror surface, until it coincides with the mirror surface upon 
reaching ! = !

c
. At the same time, the second, third, and higher-order antinodes of the 

standing wave also move toward the surface, as the period D decreases based on Eq. (1).  
The normalized E-field intensity above the mirror surface can be expressed as 

  

! 

I (" ,z) =
E

0
+E

R

2

E
0

2
= 1+R + 2 R cos(v #Qz) .       (38) 

Figure 7b shows the angular dependence of the E-field intensity at z = 0  (the mirror 
surface) and at z = 2Dc. The fluorescence signal for an ideally narrow single atomic plane 
fixed at these heights would have the same angular dependence. 

The normalized fluorescence yield from an arbitrary distribution of atoms ρ(z) 
above the mirror surface can be obtained by integrating over all values of z: 
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Y (!) = I(!,z) "(z) dz
z =0

z=#

$  .     (39) 

With I(θ,z) calculated with Eq. (38), the atom distribution profile ρ(z) can be obtained by 
assuming a modeled distribution and fitting it to the measured yield Y(θ). For the specific 
cases of δ-function atom distributions in a plane at z = xD

c
, there are x + 1

2  modulations 
between ! = 0  and ! = !

c
. The extra 12  modulation is due to the π phase shift in v. 

With TER-XSW, the Fourier transform of an atom distribution is measured over a 
continuous range in Q = 2π/D, with variable period D ranging from roughly 100 Å to 1 
µm. Therefore, TER-XSW is ideally suited to measure surface and interface structures of 
length scales in the range of 50 to 2000 Å. 

The above treatment accurately describes the X-ray E-fields at and above the mirror 
surface for the simple case of one interface with vacuum (or air). To apply TER-XSW as 
a probe for studying liquid-solid interfacial structures or organic films deposited on a 
solid surface, it is necessary to include reflection, refraction, and absorption effects from 
the layers that lie between the substrate surface and the vacuum (or air). This can be 
accomplished by making use of Parratt’s recursion formulation to calculate the 
transmitted and reflected fields at any interface. These same fields can then be calculated 
at any point within the slab by appropriately accounting for the X-ray absorption and 
refraction effects on the fields as they travel from the interface to the point. The TER-
XSW method is primarily used to profile nanoscale heavy-atom (or -ion) distributions in 
organic films and at electrified liquid/solid interfaces.  
 
X-RAY STANDING WAVES FROM LAYERED SYNTHETIC 
MICROSTRUCTURES 

For Bragg diffraction purposes, a layered-synthetic microstructure (LSM) is 
fabricated (typically by sputter deposition) to have a depth-periodic layered structure 
consisting of 10 to 200 layer pairs of alternating high- and low-electron density materials, 
such as Mo and Si. Sufficient uniformity in layer thickness is obtainable in the range 
between 10 and 150 Å (d-spacing of fundamental diffraction planes from 20 Å to 300 Å). 
Because of the rather low number of layer pairs that affect Bragg diffraction, these 
optical elements (when compared to single crystals) have a significantly wider energy 
band pass and angular reflection width. The required quality of a LSM is that 
experimental reflection curves compare well with dynamical diffraction theory, and peak 
reflectivities are as high as 80%. Therefore, a well-defined XSW can be generated and 
used to probe structures deposited on an LSM surface with a periodic scale equivalent to 
the rather large d-spacing. To a good approximation, the first-order Bragg diffraction 
planes coincide with the centers of the high-density layers of the LSM. Above the surface 
of the LSM, the XSW period is again defined by Eq. (1). The reflectivity can be 
calculated by using Parratt’s recursion formulation. This same optical theory can be 
extended to allow the calculation of the E-field intensity at any position within any of the 
slabs over an extended angular range that includes TER. Then, Eq. (39) is used to 
calculate the fluorescence yield. The LSM-XSW method is primarily used to determine 
atom (or ion) distributions in deposited organic films or at electrified liquid/solid 
interfaces. As an example the simulated reflectivity and fluorescence yields for a d=180 
Å Si/Mo LSM is shown in Figure 8. As can be seen the modulation pattern of the yield is 
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very sensitive to the height and width of the fluorescent atom layer within an organic film 
deposited on the LSM. 
  
Figure 8.  An XSW 
simulation at Eγ=18.5 keV 
for a Si/Mo multilayer 
(LSM) with d = 180 Å, 
tSi=153 Å, N=15 layer 
pairs, a Si substrate and a 
150 Å thick organic film 
on top. Each interface 
was given a σ = 3 Å 
Gaussian smear to 
simulate roughness. The 
index of refraction values 
for each type of layer 
(plus the weighted 
average Si/Mo LSM) are 
listed in (a). The angular 
dependence of the (a) 
reflectivity and (b-d) 
fluorescence yields for 4 
Å thick uniform atomic 
distributions at the (b) 
bottom, (c) middle, and 
(d) top of the organic film 
are shown. Also show in 
(c) is the case of a 20 Å 
wide Guassian 
distribution. This Q range 
includes the 0th (TER) 
through 5th -order Bragg 
peaks. The XSW period in 
the air (or vacuum) is D 
= 2π/Q. This is also a 
good approximation for 
the XSW period inside the 
organic film, except when 
refraction effects are 
appreciable, i.e., Q < 
2QC

Film. More precisely, 
Dfilm=2π/(Q2- (QC

Film)2)1/2 
for Q > QC

Film. The sharp 
drop in R at Q = QC

Si, 
corresponds to the 
excitation of a resonant 
cavity mode that has a node at the top of the organic film and a node at the bottom of the first Si layer. At 
this precise angle, the E-field intensity in the middle of this combined Si-Film slab is much higher than 
4|E0|2, as can be seen in (b). 
 
 

0

2

4

6

Y
ie

ld

Top of Film
z

0
 = 148 Å ,  !z = 4 Å

(d)

0

2

4

6

Y
ie

ld

Middle of Film
z

0
 = 75 Å ,  !z = 4 Å,  

z
0
 = 75 Å ,  2" = 20Å

(c)

0

2

4

6

Y
ie

ld

Bottom of Film
z

0 
= 3 Å,  !z = 4 Å

(b)
         Air            
150Å  Org. Film   
153Å   Si Layer    
  27Å  Mo Layer   
    Si Substrate

0

0.2

0.4

0.6

0.8

1

0 0.05 0.1 0.15 0.2

R
ef

le
ct

iv
it

y

Q = 4# sin$ /%   [ Å-1 ]

(a) Layer      & x10
6
    ' x10

8
  Q

c
 [Å

-1
]          

   Film       0.71       0.03     0.022  
     Si         1.42       0.63     0.032
    Mo        5.15       8.19     0.060
  SiMo      1.98                    0.037     

}x15



Preprint for “X-ray Standing Wave Techniques” M.J. Bedzyk, in Encyclopedia of Condensed Matter 
Physics, edited by F. Bassani, G.L. Liedl, P. Wyder (Elsevier, Oxford, 2005), Vol. 6, p. 330-341. 

 19 

FURTHER READING 
 
Authier A (2001) Dynamical Theory of X-ray Diffraction. Oxford University Press, New 

York 
Batterman BW, Cole H (1964) Dynamical diffraction of X-rays by perfect crystals. Rev 

Mod Phys 36:681-717 
Becker RS, Golovchenko JA, Patel JR (1983) X-ray evanescent-wave absorption and 

emission. Phys Rev Lett 50:153-156. 
Bedzyk MJ and Materlik G (1985) Two-beam dynamical diffraction solution of the phase 

problem: A determination with X-ray standing waves. Phys Rev B 32:6456-6463 
Bedzyk MJ, Bommarito GM, Schildkraut JS (1989) X-ray standing waves at a reflecting 

mirror surface. Phys Rev Lett 62:1376-1379 
Born M, Wolf E, Bhatia AB (1999) Principles of Optics: Electromagnetic Theory of 

Propagation, Interference and Diffraction of Light. New York: Cambridge University 
Press. 

Cheng L, Fenter P, Bedzyk MJ, Sturchio NC (2003) Fourier-expansion solution of atom 
distributions in a crystal using x-ray standing waves, Phys. Rev. Lett. 90, 255503-1 -
4. 

Golovchenko JA, Patel JR, Kaplan DR, Cowan PL, Bedzyk MJ (1982) Solution to the 
surface registration problem using X-ray standing waves. Phys Rev Lett 49:560-563 

Parratt LG (1954) Surface studies of solids by total reflection of X-rays. Phys Rev 95:359-
369 

Tolan M (1999) X-ray scattering from soft-matter thin films, Springer-Verlag, Berlin 
Vartanyants IA, Kovalchuk MV (2001) Theory and applications of X-ray standing waves 

in real crystals. Rep Prog Phys 64:1009-1084 
Wang J, Bedzyk MJ, Caffrey M (1992) Resonance-enhanced X-rays in thin-films - a 

structure probe for membranes and surface-layers, Science 258: 775-778 
Woodruff DP (1998) Normal incidence X-ray standing wave determination of adsorbate 

structures. Prog Surf Sci 57:1-60 
Zegenhagen J (1993) Surface structure determination with X-ray standing waves. Surf Sci 

Rep18:199-271 
Zegenhagen J, Kazimirov A, (guest editors) (2004) Focus on X-ray standing waves. 

Synchrotron Radiation News 17: 2-53 
 



Preprint for “X-ray Standing Wave Techniques” M.J. Bedzyk, in Encyclopedia of Condensed Matter 
Physics, edited by F. Bassani, G.L. Liedl, P. Wyder (Elsevier, Oxford, 2005), Vol. 6, p. 330-341. 

 20 

NOMENCLATURE: 
Anomalous dispersion corrections .........  Δf’ and Δf” 
Atomic form factor ..........  f0(H) 
Classical electron radius [Å] .....  re 
Coherent fraction ...... fH 
Coherent position ...... PH 
Critical angle [radians] ... θc 
Critical Period [Å] ..... Dc 
Critical scattering vector [Å-1] .... Qc 
Darwin width [radians] ..... w 
Debye-Waller factor ...... D(H) 
Diffraction plane spacing [Å] ....  d 
Effective electron density [Å-3] ..... Ne 
Effective linear absorption coefficient [Å-1] .... µz 
Effective thickness factor [unitless] .... Z(θ) 
E-Field amplitude ratio .........    EH/E0 
Takeoff emission angle [radians] .... α 
Extinction length [Å] .......   Λext 
Gamma scale factor .......  Γ 
Geometrical  factor .... aH 
Geometrical  structure factor .... SH 
Geometrical phase factor ....  sH 
Incident angle [radians] ........... θ 
Index of refraction .... n = 1 - δ - iβ 
linear  absorption coefficient [Å-1] ...............µ0 
Normalized E-field intensity ......  I 
Normalized angle parameter ....... η 
Normalized Atomic distribution function......... ρ(r) 
Normalized Atomic distribution Fourier Coefficient......... FH 
Normalized yield ......... Y 
Ordered fraction ......... C 
Phase of structure factor [radians] ....  φΗ 
Phase of  XSW [radians]  .........  v 
X-ray Photon energy [keV]  .........   Eγ 
Reciprocal lattice vector [Å-1] .......... H 
Reflectivity ................. R 
Scattering vector [Å-1] ..........  Q 
Structure factor ..................   FH 
Unit cell atomic position vector [Å] .... r 
Wave vector [Å-1] ..................   K 
Wavelength [Å] ....................... λ 
Vibrational amplitude (rms) [Å]  .....  <u2

H>1/2 
Volume of unit cell [Å3] .....  Vc 
XSW Period [Å] ..................... D 
  


