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ABSTRACT

High-Resolution Analysis of Adsorbate-Induced GaAs(001)

Surface Structures and Strain in Buried III-V Semiconductor

Heterolayers by X-Ray Standing Waves

Tien-Lin Lee

The GaAs(001) surface has been of great interest due to its technological

importance and rich surface structures. Despite considerable experimental and

theoretical investigations, the detailed structure of a number of GaAs(001) surface

reconstructions are still under debate. Recently the growth of coherently strained 3-

dimensional islands and short-period superlattices composed of III-V semiconductors

has become a new challenge for developing the next generation of electronic and optical

devices. Since the vertical dimensions of these structures are typically 2 - 3 monolayers,

the studies of adsorbate-induced compound semiconductor surfaces and the strain in

buried monolayers can directly lead to a better understanding and control of the growth

of these highly lattice-mismatched systems.

In this work, a series of high-resolution in situ measurements using the x-ray

standing wave (XSW) technique were carried out to characterize the bonding geometries

of the GaAs(001) surfaces upon the submonolayer adsorption of Sb and In. For the Sb-



iv

terminated surface, t1he XSW analysis supports the formation of a stable (2x4) structure

with 0.5 ML of Sb dimerized on the GaAs(001) surface. The XSW measured Sb dimer

bond length agreed well with previous theoretical calculations.  Several existing models

are compared and only one of them is found to be consistent with the XSW

measurements. However, for the In-terminated GaAs(001) (4x2) surface, the XSW

analysis shows that In occupies an unexpected adsorption site and disagrees with

previous models that predict the formation of In dimers. From this a new structural

model is proposed that best explains the present XSW results and previous STM

observations for this surface. In addition, XSW analysis was directly used to measure the

vertical strain in monolayers of InGaAs buried in GaAs(001) and InAsSb buried in

InSb(111). The results were compared with the macroscopic continuum elasticity theory

and a microscopic description based on random-cluster calculations using a valence-

force field. Finally, the dynamical diffraction theory necessary for calculating the x-ray

standing wave field generated by a single crystal epitaxial thin film is derived and

applied to the polarity determination of a ferroelectric thin film.

                                                  
 Thesis Adviser: M.J. Bedzyk
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    Northwestern University
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Chapter 1 Introduction

The GaAs(001) surface has been of great interest due to its technological

importance and rich surface structures. Despite considerable experimental and

theoretical investigations, the detailed structures of a number of the reconstructions are

still under debate. Recently the growth of coherently strained 3-dimensional islands and

short-period superlattices composed of III-V semiconductors has become a new

challenge for developing the next generation of electronic and optical devices. The

studies of adsorbate-induced compound semiconductor surfaces and the strain in

heterolayers can directly lead to a better understanding and control of the growth of

highly lattice-mismatched systems. I therefore carried out in this thesis work a series of

high-resolution measurements using the x-ray standing wave technique to characterize

the bonding geometries of the GaAs(001) surface upon the adsorption of Sb and In as

well as the local lattice distortions in strained buried monolayers.

In the following chapters, I first discuss the principle of the x-ray standing wave

technique in Chapter 2. The dynamical diffraction theory for x-rays is described in

Section 2.2. Towards the end of my thesis work I was involved in developing a new

structural probe for determining the polarization state of a ferroelectric thin film using

the x-ray standing waves generated by the film. Since this requires an understanding of

Takagi-Taupin dynamical theory, and since no comprehensible description of this theory

(particularly for the application in the standing wave technique) is available, I introduce

1
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 the dynamical theory following Takagi and Taupin's approach. This leads to results of

more general applications. Examples of theoretical simulations and experimental data

are presented at the end for a ferroelectric thin film. It is shown that the conventional,

Ewald and von Laue's approach, which is what most of this thesis work is based on, can

be described as a special case of this more general theory.

In Chapter 3 we discuss the experimental setup for the x-ray standing wave

measurements. The x-ray experiments reported in this thesis were conducted at

Brookhaven National Laboratory and Argonne National Laboratory using synchrotron

radiation. As we have been increasingly using the newly constructed x-ray source at

Argonne National Laboratory, I have more descriptions of the standing wave setups used

there.

In Chapter 4 I review the background information for the GaAs(001) clean surface.

First there is an introduction to the electron counting model for semiconductor surfaces.

It explains the fundamental surface structures of the III-V surfaces based on simple

electronic and energetic considerations. I then discuss a number of surface

reconstructions observed for GaAs(001), including both the structural and electronic

properties. I put emphasis on the As-rich (24) reconstruction due to the extensive

previous investigations and its technological importance. However, the (42) surface is

more relevant to the study in Chapter 6. I describe the procedure for preparing a clean

GaAs(001) surface at the end of Chapter 4.

Chapters 5 and 6 describe the results of in-situ studies of adsorbate structures on the

GaAs(001) surface. In Chapter 5 I discuss the measurements for the coverage and the
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dimer bonding geometry of the GaAs(001): Sb (2 4) surface. I compare our

measurements with theoretical calculations and six existing structural models. It is found

that one, and only one, of these models is consistent with our experimental. In Chapter 6

I describe investigations of the surface structure of the In-induced GaAs(001)

(42)/c(82) reconstruction. Our x-ray standing wave measurements suggest an

unexpected In adsorption site. I also discuss the possible surface Ga and As structures

based on high-resolution scanning tunneling microscopy images from our collaborators.

We propose a c(82) unit cell to best explain the experimental observations. A general

review of InAs(001) surface structures, the growth of InAs on GaAs(001) and related

issues are given at the beginning of this chapter to outline the motivation and to also help

understand the In-induced (42)/c(82) reconstruction.

In Chapter 7 I include our XSW results for the measurements of strain in buried III-

V monolayer heterolayers. The expansion or contraction of buried III-V layers is directly

measured by the x-ray standing waves and compared with continuum elasticity theory

and random-cluster calculations using the Keating valance force field. I first discuss the

case of one monolayer of InGaAs buried in GaAs(001). Based on our studies we

conclude with a simple microscopic picture describing the bond-bending-induced local

lattice distortions of a strained (001) layer, which leads to the macroscopic behavior

described by continuum elasticity theory. For a (111)-oriented film, a more complicated

picture associated with a bond length split due to symmetry considerations has been

predicted by a random cluster calculation. However, our x-ray standing wave

measurements and extended x-ray absorption fine structure studies of InAsSb
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monolayers buried in InSb(111) are inconsistent with the theoretical calculations. We

also show the results of x-ray standing wave measurements using off-normal reflections

and the evanescent wave emission effect. We briefly summarize this thesis work in

Chapter 8.



T.-L. Lee PhD Thesis Northwestern University (1999).

Chapter 2 X-Ray Standing Wave Technique

2.1  Introduction

In this chapter I introduce the x-ray standing wave (XSW) technique based on the

generalized dynamical theory developed by Takagi [1] and Taupin [2], which was

initially derived for treating deformed crystals, but recently has been applied more

extensively to diffraction studies of thin film structure [17]. This is due to the advantage

that the theory can be expressed explicitly as a pair of partial differential equations with

respect to the depth z. The understanding of this theory has led to the prediction of a new

structural probe using the standing wave field generated by Bragg reflections of thin

films. The feasibility of this technique has been demonstrated experimentally by a

number of research groups [3 - 9]. The classical dynamical theory, which forms the

theoretical foundation of this thesis work and is applicable mainly to semi-infinite

perfect crystals, will be shown to be a special case of the more general theory. A review

of the conventional x-ray standing wave method can be found in Ref. 10.

2.2  Generalized Dynamical Theory of x-ray

The difference between the dynamical and the kinematical diffraction theories lie in

the fact that the former takes into account multiple scattering, which becomes a

dominant effect for strong reflections such as those used for XSW measurements.

Several different approaches have been developed for dynamical calculations. Complete

5
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historical and theoretical reviews of the various dynamical theories for x-ray can be

found in Ref. 11 – 15. Most of the theoretical studies were focused on deriving the

scattered intensity at the surface (i.e., the reflectivity). For the XSW technique, we need

to also calculate the total field intensity inside a crystal.

2.2.1  Total field intensity

In the XSW method, atomic positions are probed by monitoring their emission of

the secondary photons or electrons while spatially scanning the XSW field through the

lattice. Based on the electrical dipole approximation of the photoelectric effect [10, 16],

the yields of the emitted fluorescence and photoelectrons, or the cross section of the

photoelectric effect, are proportional to the total field intensity at the center of the probed

atom. We hence first derive the total internal D-field intensity within the two-beam

approximation.

Consider an incident and a Bragg-diffracted plane waves traveling along k0 and kH,

respectively,

  

D0 =D0e
2 πi [νt−k0 ⋅r ]   

DH =DHe2πi[ν t−kH ⋅r]
 , (2.1)

where H is a reciprocal lattice vector of the diffracting crystal. D0 and DH are the D-field

amplitudes of the incident and scattered waves. ν is the photon frequency. For the
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internal wave vectors k0 and kH the conservation of momentum or Bragg’s law requires

that

kH = k0 + H . (2.2)

The internal wave vectors can be related to the external wave vectors K0 and Ke through

proper boundary conditions at the surface. K0 and KH are real vectors with an amplitude

|K0| = |KH| = K = |1/λ|, where λ is the wavelength of the x-ray, while D0, DH, k0 and kH

are in general complex vectors.

  The total field intensity can be expressed as

  D
2
= D0 +DH

2
= e−2πik 0 ⋅r D0

ˆ e 0 +DH
ˆ e He−2πiH ⋅r( )

2

= D0
2 e−4πk0 "⋅r 1+

DH

D0

2

+ 2ˆ e 0 ⋅ ˆ e H Re D0
∗DH

D0
2 e−2πiH⋅r

 

 
 

 

 
 

 
 
 

 
 
 

, (2.3)

where we have applied Eq. (2.2) and defined k0 = k0' −ik0 " . ˆ e 0  and ˆ e H  are the unit

vectors along D0 and DH. If we define the polarization factor P = ˆ e 0 ⋅ ˆ e H  and the D-field

amplitude ratio XH =
DH

D0
, and used the fact that D0

∗DH

D0
2 =

DH

D0
=XH , Eq. (2.3) can be

further reduced to

  D
2
= D0

2 e−4 πk 0 "⋅r 1 + XH
2
+ 2P XH cos υ − 2πH ⋅ r[ ]{ } , (2.4)
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where υ is the phase of XH (i.e., the phase difference between the incident and the

scattered waves).

Eq. (2.4) indicates that to calculate the total internal D-field intensity |D|2 at a

position r inside a crystal, we need to know (1) the D-field amplitude ratio XH at r and

(2) the incident D-field intensity   D0
2 e−4πk 0"⋅r = D 0

2  at r . It will be shown in the

following discussion that the factor e−4πk 0"⋅r  carries the information regarding the

attenuation of the primary beam.

2.2.2  Recursion formulae

In this section we discuss how to calculate XH and   D 0
2  for a multilayer structure.

We follow the argument used by Bartels et al. [17] to develop a set of recursion

formulae, which are the most desirable form for dynamical calculations for a layered

system. These formulae consider noncentrosymmetric crystals and misoriented

interfaces.

Figure 2.1 shows the schematic of a multilayer structure composed of a substrate

and N layers of films. It is assumed that the structure is homogeneous within each layer.

To help the discussion proceed, we define the modified D-field amplitudes to be

D0 = D0e
−2πk 0"⋅r  and DH = DHe

−2πk0 "⋅r  to include attenuation. Notice that

DH
D0

=
DH

D0
=XH . In Figure 2.1 we are interested in calculating XH and D0 at point A,
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Figure 2.1  The left-hand sides of (a) and (c) show the schematic of a multilayer
structure composed of a substrate and N layers of films. On the right-hand side the
structure is divided into two parts in two different ways to illustrate how the recursion
formulae can be derived. (b) depicts all the amplitude ratios for a film with miscut.
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which is located inside the nth layer and t1 below the n/(n+1) interface [or t2 above the

(n-1)/n interface].

Figure 2.1(a) shows the quantities we need to calculate XHA. We assume that we

already know (1) the transmission (XHTt2) and reflection (XHRt2) amplitude ratios of the H

reflection for a slab of thickness t2 of the nth layer material, (2) the transmission ( X HTt2 )

and reflection ( X HRt2 ) amplitude ratios of the H  reflection for the same slab, and (3) the

(reflection) amplitude ratio (XHB) for the H reflection at the surface of a semi-infinite

crystal composed of the substrate and the first (n-1) layers. XHTt2 is defined to be the

ratio between the modified D-field amplitudes at the bottom and the top surfaces

traveling in the k0 direction. For X HTt2  and X HRt2  we consider the incident beam arriving

at the bottom surface along the kH direction and the scattered beam traveling along the k0

direction  [Figure 2.1(b)]. This is required by the two-beam approximation (i.e., only two

wave vectors are considered). It also implies that X HTt2  ( X HRt2 ) are in general different

from XH Tt2  (XH Rt2 ) due to miscut and noncentrosymmetry of the films.

The following set of linear equations of D0A, DHA, D0B and DHB can be derived by

considering multiple diffraction in Figure 2.1(a)

DHA = D0AXHRt 2 + DHBX HTt2 ,   D0B = D0AXHTt2 +DHBX HRt 2 ,   DHB = XHBD0B , (2.5)

which can be combined into a single equation by eliminating all the D’s
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 XHA =
XHRt2 +XHB XHTt2 X HTt2 − XHRt 2X HRt2( )

1 −XHBX HRt 2
. (2.6)

Eq. (2.6) is the expression for calculating the amplitude ratio at any location inside a

multilayer. The recursion nature of Eq. (2.6) is clear: The value of XHA obtained at the

n/(n+1) interface becomes the XHB that we need for calculating XHA in the (n+1) layer.

The other four complex quantities in Eq. (2.6), which are associated with the slab of

thickness t2, have to be calculated individually based on Takagi-Taupin theory at each

point. The recursion process starts with the substrate and advances upwards through each

layer until it reaches point A.

Using the similar approach we can derive a general expression for D0 = D0e
−2πk 0"⋅r .

In Figure 2.1(c) we consider a slab of thickness t1 and a semi-infinite crystal terminated

at surface A. If we already know XH Tt1 , XH Rt1 , X HTt1 and X HRt1 , which are defined in a

similar way and can be calculated from Takagi-Taupin theory, we can derive the

following algebraic relationship between D0A and D0C

D0A = D0C XHTt1 + DHAX HRt1 = D0CXHTt1 +D0AXHAX HRt1 , (2.7)

which leads to

 D0A =
D0CXHTt1

1− XHAX HRt1
. (2.8)
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Eq. (2.8) implies that, due to the dependence of D0A on D0B, the recursion process for

calculating D0A needs to start at the surface of the multilayer and then proceed layer by

layer down to point A. Since XHA appears in the right hand side of Eq. (2.8), the

computing strategy would be to carry out the calculation for XHA [Eq. (2.6)] first.

 With the recursion formulae the problem we are trying to solve has been simplified,

with respect to dynamical calculations, from dealing with an arbitrary multilayer system

to considering just a single slab. We next discuss the generalized dynamical theory -

Takagi-Taupin theory.

2.2.3  Takagi-Taupin theory

In this section we first compare briefly the differences between the classical (based

on Ewald [18] and von Laue [19]) and the generalized (based on Takagi [1] and Taupin

[2]) dynamical theories. We then derive the latter following the argument used in Ref.

20. More discussions regarding Takagi-Taupin theory can be found in Ref. 12 and 21 –

24.

In Ewald and von Laue’s approach the dynamical theory was developed by solving

Maxwell’s equations in a medium described by a perfectly periodic complex dielectric

function κ . Based on the classical dipole oscillator model [11, 25] the electric

susceptibility χ of a periodic medium can be described by a Fourier sum over the

reciprocal lattice as
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χ(r) = κ −1 = −Γ Fg
g
∑ e−2πig⋅ r, (2.9)

where g’s are the reciprocal lattice vectors, Γ = reλ2

πVuc
, re =

e2

mc2
 and Vuc the unit cell

volume. Fg = ρe(r)e
2π ig⋅rdr

Vuc∫  is the structure factor [26]. The solution near a Bragg

reflection to the Maxwell’s equations employing the periodic dielectric function Eq.

(2.9) is assumed to be

  
D (r, t) = e2 πiνt Dge

−2πikg ⋅r

g
∑ = e2πiνte−2πik0 ⋅r Dge

−2πig⋅ r

g
∑ , (2.10)

where kg = k0 + g. Eq. (2.10) has the form of a Bloch function. Notice that the

coefficients Dg are constant vectors due to the translational symmetry along the surface

normal for a semi-infinite perfect crystal, i.e., the part of the crystal below any point r is

still a semi-infinite crystal.

 Takagi-Taupin theory was originally derived for predicting the intensity of

dynamical diffraction from a slightly deformed crystal. Consider that the deformation of

the lattice has transformed a vector r0 into a new vector r. We can define a displacement

field u as u(r) = r – r0. The electric susceptibility for the deformed lattice become

χ(r) = −Γ Fg
g
∑ e−2πig⋅[ r−u( r )] . (2.11)
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The transformation r0 = r – u(r) will convert Eq. (2.11) back into Eq. (2.9).

To find a possible solution, as we did in Eq. (2.10) for the classical theory, we need

to construct a new reciprocal space for the deformed crystal. Consider three vector a0 =

ra0 – r0 defined in a perfect lattice (Figure 2.2). After a deformation of the lattice the

three vectors become

a = ra − r = [ra0 + u(ra )] − [r0 + u(r)] = a0 + u(r + a) − u(r) . (2.12)

If we assume |a | << |r|, or a macroscopic deformation, we can express u(r+a) as

u(r + a) = u(r) + a ∂u
∂r
 
 

 
 

. Eq. (2.12) thus implies that

a = a0 1+
∂u
∂r

 
 

 
 

 
 
 

 
 
 

, (2.13)

where ∂u
∂r

 
 

 
 

 is nothing but the strain tensor ε ij =
∂ui
∂rj

 

 
 

 

 
 . If ai’s are the real-space basis

vectors for the deformed crystal, the corresponding reciprocal basis vectors can be

defined as b j ⋅ a i = δ ij , and Eq. (2.13) would imply that b j = 1 − ∂u
∂r
 
 

 
 

 
 
 

 
 
 
b0 j . Therefore, in

general, a deformed reciprocal lattice can be constructed on the basis of the perfect

reciprocal lattice as
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g(r) = 1− ∂u
∂r

 
 

 
 

 
 
 

 
 
 
g0 = g0 −

∂u / ∂x
∂u / ∂y
∂u /∂z

 

 

 
 

 

 

  g0 = g0 − ∇(g0 ⋅u) , (2.14)

where the subscript 0 denotes vectors for perfect crystals. Based on this new vector

system, a simple equation, expressed in the form of a modified Bloch function, can be

used as the assumed solution to the Maxwell’s equations containing the dielectric

function Eq. (2.11)

  
D (r, t) = e2 πiνt Dg0 (r)e

−2 πi kg0 ⋅r− g0 ⋅u( )

g0
∑ . (2.15)

Applying the momentum operator   −ih∇  to the g0-th component wave in Eq. (2.15) we

have 
  
−ih∇e−2πi (kg0 ⋅r− g0 ⋅u) = −2πh kg0 − ∇(g0 ⋅u)[ ]e−2πi (kg0 ⋅r− g0 ⋅u) , which suggests that 

kg = kg0 − ∇(g 0 ⋅u) = k0 + g0 − ∇(g 0 ⋅u) = k0 + g (2.16)

can be considered as the true wave vector for the g0-th component wave. Due to the

deformation as well as the possible finite dimensions of the crystal the coefficients D in

(2.15) are not constants any more.

We now derive the Takagi-Taupin equations [20]. We start with solving Maxwell’s

equations
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Figure 2.2  Transformation of a real space lattice vector from a0 to a due to a
displacement field u(r) induced by a small deformation of the lattice.

Figure 2.3  The σ and π polarization vectors for the incident and the diffracted waves.
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∇ ×E = −
1
c
∂H
∂t

∇ × H =
1
c
∂D
∂t

 

 
 

  
(2.17)

using Eq. (2.11) and (2.15). The equations in (2.17) can be combined into a single

equation [27]

  
∇2D - 1

c2
∂2D
∂t2

+∇ ×∇ × (χD ) = 0 . (2.18)

The three terms in (2.18) can be derived individually as the following [28]

  

∂ 2D
∂t2

= −4π2ν2e2πiνt Dg0 (r)e
−2πi k g0 ⋅r−g0 ⋅u (r)( )

g 0
∑ , (2.19)

  
∇2D = −e2 πiνt 4πi kg ⋅ ∇( )Dg0 + 4π2 kg ⋅kg( )Dg0{ }e−2π i kg0 ⋅r− g0 ⋅u( )

g0
∑ , (2.20) 

  
∇ × (χD ) = −Γe2πiνt e−2πi k g0 ⋅r−g 0⋅u( )

∇ − 2πikg( ) × Dq 0 Fg0 −q 0
q 0
∑

 
 
 

 
 
 g 0

∑ , (2.21)

  
∇ ×∇ × (χD ) = 4π2Γe2πiν t e−2πi kg0 ⋅r− g0 ⋅u( ) Fg0 −q 0kg × kg ×Dq0( )

q 0
∑

 
 
 

 
 
 g0

∑ . (2.22)

Substituting (2.19), (2.20) and (2.22) into (2.18) we have
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4πi kg ⋅ ∇( )Dg 0
+ 4π2 kg ⋅kg( ) − ν

c
 
 

 
 

2 

  
 

  
Dg0

 
 
 g0

∑

                         −4π 2Γ Fg0 −q0
kg × kg ×Dq 0( )

q0

∑
 
 
 
e−2πi kg0 ⋅r− g0 ⋅u( )

= 0

(2.23)

Let us define ˆ s g  and ˆ e g0
 to be the unit vectors of kg  and Dg0

, respectively. Since ˆ s g⊥ˆ e g0

[29], Dg 0  can be decomposed as  Dq 0
= Dq 0

⋅ ˆ s g( )ˆ s g + Dq0
⋅ ˆ e g 0( )ˆ e g 0

. We can then make

the following simplification [30]

kg × kg ×Dq 0( ) = Dq0
⋅kg( )kg − kg ⋅k g( )Dq 0

= kg
2 Dq0

⋅ ˆ s g( )ˆ s g − kg ⋅kg( )Dq 0

= − kg
2

Dq 0
⋅ ˆ e g0( )ˆ e g0

+ kg
2
− kg ⋅k g( )Dq0

≈ −kg
2

Dq0
⋅ ˆ e g 0( )ˆ e g 0

. (2.24)

Therefore, for each reciprocal lattice vector g0 in (2.23) we have:

i kg ⋅∇( )Dg0
+ π kg ⋅kg( ) −K2[ ]Dg0

+ πΓ Fg 0 −q 0
kg

2
Dq 0

⋅ ˆ e g0( )ˆ e g0
= 0

q 0

∑ , (2.25)

where K = ν /c  = 1/λ. (2.25) can be further simplified by applying the two-beam

approximation, which requires that the indices g0 and q0 can only be 0 or a reciprocal

lattice vector h0. For the σ polarization state (Dq 0
⋅ ˆ e g0

= Dq0
, Figure 2.3) and g0 = 0

(2.25) becomes
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i k0 ⋅∇( )D0
σ + π k0 ⋅k0( ) −K2[ ]D0

σ + πΓ F0 k 0
2D0

σ + Fh 0
k 0

2Dh 0

σ( ) = 0

or      i k0 ⋅∇( )D0
σ + π k0 ⋅k0( ) − K2 − ΓF0 k 0

2( )[ ]D0
σ + πΓFh 0

k0
2Dh 0

σ = 0 . (2.26)

First we notice that by definition (2.14) k0 = k00 , i.e., deformation has no effect on the

incident wave vector. We thus drop the subscript 0 denoting perfect crystals for the

incident beam. Second, based on Ref. 26 the average complex amplitude of the internal

wave vector is k = K 1 − 1
2
ΓF0

 
 

 
 . We can make the approximation [31]

K2 − ΓF0 k 0
2
≈K2 − ΓF0k

2 = k2 1 + ΓF0( ) − ΓF0k2 = k2 . (2.27)

We now define the dispersion parameter for the incident wave vector

ξ 0 =
k0 ⋅k0( ) − k2

2k
(2.28)

and (2.26) reduces to

i ˆ s 0 ⋅ ∇( )D0
σ + 2πξ0D0

σ + πkΓFh 0
Dh 0

σ = 0 . (2.29)

For g0 = h0 (2.25) becomes

i kh ⋅∇( )Dh 0
σ + π kh ⋅kh( ) −K2[ ]Dh 0

σ + πΓ Fh0 kh
2D0

σ + F0 kh
2Dh0

σ( ) = 0 . (2.30)
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Through the similar argument, we have

i ˆ s h ⋅∇( )Dh 0

σ + 2πξhDh 0

σ + πkΓFh 0
D0

σ = 0 , (2.31)

where ξh =
kh ⋅kh( ) − k2

2k
 is the dispersion parameter for the scattered wave vector. For

the π polarization state (Figure 2.3) Dq 0
⋅ ˆ e g0

= Dq0
ˆ e q 0

⋅ ˆ e g0( ) =
     Dq 0

         if q0 = g0

Dq 0
cos2θB  if q 0 ≠ g0

 
 
 

.

(2.25) reduces to

 i ˆ s 0 ⋅ ∇( )D0
π + 2πξ0D0

π + πkΓFh 0
cos2θBDh0

π = 0  for g0 = 0, (2.32)

and i ˆ s h ⋅∇( )Dh 0

π + 2πξhDh 0

π + πkΓFh 0
cos2θBD0

π = 0  for g0 = h0. (2.33)

By combining the results form the two polarization states we obtain the Takagi-Taupin

equations

iλ ˆ s 0 ⋅ ∇( )D0 = −2πλξ 0D0 + πχh 0
PDh0

(2.34)

and iλ ˆ s h ⋅∇( )Dh 0
= πχh0

PD0 − 2πλξhDh 0
, (2.35)

where we have applied the approximation ΓFg 0 k i ≈ −χg0 /λ  and defined the polarization

factor P =
      1       for σ polarization 
cos2θB  for π polarization

 
 
 

.
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2.2.4  Boundary conditions (Bragg case), dispersion surfaces and deviation parameter

Before we can solve (2.34) and (2.35) for either a slab or a semi-infinite crystal, it is

necessary to examine the boundary conditions at the surface, from which the two

dispersion parameters ξ0 and ξh can be calculated.

Since we are only interested in perfect lattices [u(r) = 0], we omit all the subscript 0

in the following discussion. The D-field amplitudes D0 and Dh are expected to be only

functions of z due to the possible finite crystal dimensions in this direction. The left-

hand side of (2.34) and (2.35) can be thus reduced to (Figure 2.4) ˆ s 0 ⋅∇( )D0 =

sin(θ + φ) dD0

dz
 and ˆ s h ⋅ ∇( )Dh = − sin(θ − φ) dDh

dz
. The Takagi-Taupin equations become

iλγ 0
dD0

dz
= −2πλξ0D0 + πχh PDh (2.36)

and iλγ h
dDh

dz
= πχhPD0 − 2πλξhDh , (2.37)

where γ 0 = sin(θ + φ),  γh = − sin(θ− φ) , and φ is the miscut angle.

  To have a geometrical interpretation of the dispersion parameters ξ0 and ξh, we

first apply the following approximation

ξ 0 =
k0 ⋅k0( ) − k2

2k
=

k0 ⋅k0( )1/ 2 + k( ) k0 ⋅k0( )1 / 2 − k( )
2k

≈ k0 ⋅k0( )1 / 2 − k  . (2.38)
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Figure 2.4  The miscut angle φ of a surface. The value of φ is defined to be positive in
this picture.

Figure 2.5  Two sets of internal and external Ewald spheres satisfying a Bragg
condition for a reflection H.
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Similarly, ξ 0 =
kh ⋅kh( ) − k2

2k
≈ kh ⋅kh( )1/ 2 − k  . (2.39)

We then plot the internal and external Ewald spheres with the wave vectors under a

Bragg condition in Figure 2.5. Notice that in the wavelength range of x-ray the internal

Ewald sphere is only about 10-5 smaller than the external sphere. Figure 2.6 (a) shows a

magnification of Figure 2.5 around the intersections between the incidence and the

diffraction spheres. Based on (2.38) and (2.39) the amplitude of the true internal wave

vector k0 (kh) will deviate from the average value (1-ΓF0/2)/λ by ξ0 (ξh) in the vicinity of

a Bragg reflection. We indicate the real parts of the two dispersion parameters in Figure

2.6(a). For semi-infinite perfect crystals, since D0 and Dh are constants, the Takagi-

Taupin equations (2.36) and (2.37) reduce to the simpler form described by the classical

dynamical theory

−2πλξ 0D0 + πχh PDh = 0 (2.40)

and πχhPD0 − 2πλξhDh = 0 , (2.41)

which have non-trivial solutions for D0 and Dh only if

−2πλξ0 πχh P
πχhP −2πλξh

= 0 ,   or   ξ 0ξh =
1
4λ2

P 2χhχ h  . (2.42)
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(2.42) defines two hyperbolic surfaces near a Bragg reflection called the dispersion

surfaces [the dashed lines in Figure 2.6(a)].

When a set of plane waves travel across a surface, the internal and external waves

are expected to have the same amplitude and frequency, i.e., D0ee
2πiK0 ⋅r +Dhee

2 πiK h ⋅r

= D0e
2π ik 0⋅r +D he

2π ikh ⋅r . This implies (a) D0e = D0 and Dhe = Dh, and (b) K0 ⋅r = k0 ⋅ r

and Kh ⋅ r = kh ⋅r . Since r lies in the surface, (b) further implies that

k0 = K0 −
q0

λ
ˆ n   and  kh =Kh −

qh

λ
ˆ n , (2.43)

where ˆ n  is the surface normal. (2.43) states that the internal wave vectors can only differ

from their external wave vectors by a vector parallel to the surface normal [Figure

2.6(a)]. The quantities q0 = q0' +iq0 "  and qh = qh ' +iqh"  are complex. Their real parts

are shown in Figure 2.6(a) as q0'
λ

ˆ n = DF  and qh'
λ

ˆ n = GF . (2.43) also suggests that

k0' = K0 −
q0'
λ

ˆ n , k0 "= q0 "
λ

ˆ n , kh '= K0 +H −
q0'
λ

ˆ n  and kh"= q0"
λ

ˆ n . Therefore, for a

Bragg diffraction from a perfect crystal, once the external incident angle is given [D in

Figure 2.6(a)], the boundary condition (2.43) will select a tie point (F) on the dispersion

surface [32], which determines the dispersion parameters and thus the internal wave

vectors.
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Figure 2.6  Selection of a tie point (F) on the dispersion surfaces by the boundary
condition and the geometrical interpretation of the dispersion parameters (see text).
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It is possible to relate the dispersion parameters to the measurable quantities such as

γ0, γh, θB and Δθ = θ − θB [Figure 2.6(b)]. Based on (2.38) the imaginary part of ξ0 can be

expressed as

ξ 0"= Im (k0' −ik0 ") ⋅ (k0' −ik0 ")[ ]1/ 2
− k{ } ≈ Im (k0' )2 − i2 q0 "

λ
ˆ n ⋅k0'

 
 

 
 

1/ 2

− k 

  
 

  

≈ Im k0' 1− i
λ

q0"
k0'

γ 0

 

 
  

 
 −

1
λ

1− 1
2
ΓF0

 
 

 
 

 

  
 

  
=

1
λ

1
2
ΓF0"−q 0 "γ 0

 
 

 
  .

(2.44)

Similarly ξh"=
1
λ

1
2
ΓF0 "−q 0"γ h

 
 

 
 . (2.45)

The expressions for the real parts of ξ0 and ξh can be derived geometrically [Figure

2.6(b)]

ξ 0'= FP =MQ = DQ −DM =
1
λ

1
2
ΓF0' −q0' γ 0

 
 

 
 (2.46)

ξh' = FN = BC = AC −AB = AC −AD + BD =
1
λ

1
2
ΓF0' −Δθ sin2θB − q0' γh

 
 

 
 (2.47)

(2.44) – (2.47) imply that ξ 0 =
1
λ

1
2
ΓF0 − q0 γ 0

 
 

 
 (2.48)

and ξh =
1
λ

1
2
ΓF0 − Δθsin 2θB − q0γ h

 
 

 
 . (2.49)
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Therefore we have γ hξ 0 − γ 0ξh =
γ h

λ
P b χhχh ( )1/ 2η, (2.50)

Where η=
bΔθ sin2θB − χ0 (1 − b) / 2

P b χhχh ( )
1/ 2 (2.51)

and b = γ 0
γ h

. η is the so-called deviation parameter. The expression (2.50) will be used in

solving Takagi-Taupin equations in Section 2.2.5. It can be shown that geometrically

γ hξ 0' −γ 0ξh' = γ 0γhGE  in Figure 2.6(b).

2.2.5  Solutions to Takagi-Taupin equations for perfect slabs

In this section we solve the Takagi-Taupin equations for a perfect slab of thickness t

(Figure 2.7). Semi-infinite perfect crystals can then be treated as a special case as t

approached infinity. As we need for applying Eq. (2.6) and (2.8), we first derive the

expressions for XHRt  and XHTt , and then consider X HRt  and X HTt .

The boundary conditions [(2.43), (2.50) and (2.51)] discussed in Section 2.2.4 for

the internal and external wave vectors are still valid here, but the dispersion surfaces are

undefined for a slab because dDh/dz ≠ 0 in (2.37) and the determinant 
−2πλξ0 πχh P
πχhP −2πλξh

can not be zero in this case.
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To make the derivation more concise, we introduce two complex quantities

D0' = D0e
−2πiξ 0 / γ 0  and Dh '= Dhe

−2 πiξ 0 / γ 0 . Using them and the expression (2.50) we

convert the Takagi-Taupin equations (2.36) and (2.37) to

iλγ 0
dD0'
dz

= πχh PDh ' (2.52)

and iλγ h
dDh '
dz

= πχhPD0'−2π P
χhχh 

b
 

 
  

 
 
1/ 2

ηDh ' . (2.53)

We separate the two variables D0’ and Dh’ into two second-order equations

γ 0γ hλ
2 d2D j'

dz2 − 2πiλ P γ 0γ h χhχh ( )1 / 2
η

dD j'
dz

+ π2 P2χhχh Dj' = 0, j = 0,  h . (2.54)

Solving (2.54) is straightforward. The solutions are expected to have the following form:

D j' = Cj1e
α +z + Cj2e

α− z,  j = 0,  h (2.55)

where α± = −
πi P
λ

χhχ h 

γ 0γ h

 

 
 

 

 
 

1/ 2

η± η2 −1( ) . (2.56)
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To solve the constants C in (2.55) we apply the boundary conditions at both the top

and the bottom surfaces of the slab (Figure 2.7), i.e., D0' (z = 0) = 1 and Dh ' (z = t) = 0 .

The solutions are

XHRt = Dh z=0 =
iπPχh
λ γh

1 − e(α + −α− )t

α+e
(α + −α− )t − α−

 

 
  

 
  (2.57)

and XHTt = D0 z= t = D0 z= t e
−2πk0 "t =

α+ − α−( )
α+e

−α− t − α−e
−α+ t

e2πiξ 0 t / γ 0e−2πk0 "t . (2.58)

Since k0 "=
q0"
λ

=
−1
γ 0

χ0"
2λ

+ ξ0 "
 
 

 
  [(2.43) and (2.44)], we have

XHTt =
α+ − α−( )

α +e
−α −t − α−e

−α +t
e
2π iξ0 '+

χ0 "
2λ

 

 
  

 

 
  t / γ 0

. (2.59)

For semi-infinite crystals, t →∞ and lim
t→∞
Re α + − α−( )t = ±∞. Using the fact that

α+α− = −
π2P 2

λ2
χhχ h 

γ 0γ h

 we have from (2.57)

XHR∞ = −
iπPχ h

λ γ h

1
α±

=
iλγ 0

πPχh 

α± =
P
P

b χh

χh 

 

 
 

 

 
 

1/ 2

η± η2 −1( ) , (2.60)

which agrees with the classical dynamical theory [11].
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Figure 2.7  Reflection and transmission amplitude ratios for the H and –H reflections
of a slab. Notice that z is defined to point at the opposite directions for these two
cases.

Figure 2.8  Boundary conditions for the H and –H reflections of a slab. The same tie
point is selected owing to the requirement of the two-beam approximation.
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We consider next the expressions for X HRt  and X HTt . Here we need to utilize the

dispersion parameter we discussed in Section 2.2.4. As we mentioned in 2.2.2, X HRt  and

X HTt  are the reflection and transmission amplitude ratios associated with the incident

wave vector k 0 = kh  entering from the bottom surface of the slab (Figure 2.7). Since the

miscut angle is φ = −φ  for this case [Figure 2.1(a) and 4], the direction cosines of the

incident and the diffracted beams become γ 0 = −γ h  and γ h = −γ 0 (∴  b =1/b) .

Therefore, in principle, X HRt ≠ XH Rt  and X HTt ≠ XH Tt . However, since the two-beam

approximation considers two (and only two) wave vectors at any time, the boundary

conditions at the bottom surface of the slab for the back scattering should lead to the

same tie point selected by the H reflection (Figure 2.8). This implies ξ 0 = ξh  and

ξ h = ξ 0 . Therefore, the Takagi-Taupin equations (2.36) and (2.37) become

−iλγ h
dD 0
dz

= −2πλξhD 0 + πχhPD h (2.61)

and −iλγ 0
dD h
dz

= πχh PD 0 − 2πλξ0D h . (2.62)

We again introduce two new complex quantities D 0' = D 0e
2πiξ 0 / γ 0  and D h '= D he

2πiξ 0 / γ 0 ,

which, together with (2.50), convert (2.61) and (2.62) to:

−iλγ h
dD 0'
dz

= πχhPD h ' −2πP
χhχ h 

b
 

 
  

 
 

1 / 2

ηD 0' (2.63)
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and −iλγ 0
dD h'

dz
= πχh PD 0' . (2.64)

(2.63) and (2.64) are equivalent to the following two second-order equations

γ 0γ hλ
2 d2D j'

dz2 + 2πiλ P γ 0γ h χ hχh ( )1 / 2
η

dD j'
dz

+ π2 P2χhχh D j' = 0, j = 0,  h . (2.65)

The general solutions of (2.65) have the form D j' = C j1e
α +z + C j2e

α − z with j = 0,  h , where

  

α ± = −
πi P
λ

χhχ h 

γ 0γ h

 

 
 

 

 
 

1/ 2

−η± η2 −1( ) = −αm
(2.65)

Applying the same boundary conditions at the surfaces we have

X HRt = D h z =0
=

iπPχh 

λγ 0

1− e(α+ −α − )t

α+e
(α + −α − ) t − α−

 

 
  

 
 (2.66)

and X HTt = D 0 z= t
= D 0 z= t

e2πk h "t =
α + − α−( )

α+eα+ t − α−e
α− t e−2 πiξ0 t / γ 0e2πkh " t . (2.67)

Notice that kh"⋅r = −k h"z  (Figure 2.7) for this case. Since kh"=
q0 "
λ

= −
1
γ 0

χ0"
2λ

+ ξ0"
 
 

 
 

[(2.43) and (2.45)], we have
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X HTt =
α+ −α−( )

α +e
α+ t −α−e

α− t e
−2 π iξ0 '+

χ 0 "
2λ

 

 
  

 

 
  t / γ 0

. (2.68)

One small problem is that the expressions for the transmission amplitude ratios

(2.59) and (2.68) both contain the real part of the dispersion parameter ξ0’ in the

exponents. The calculation of ξ0 is unavailable due to the fact that the dispersion surfaces

are unknown. However, first, in Eq. (2.8) our real interest is to be able to calculate the

intensity |D0A|2, rather than D0A. Second, in using Eq. (2.6), what we really need is the

product of (2.59) and (2.68), which can be expressed as

XHTtX HTt =
α+ − α−( )2

α+e−α− t − α−e−α+ t( ) α+eα+ t − α−e
α− t( )

, (2.69)

 where ξ0’ has been cancelled out. Therefore, we have solved, without knowledge of the

dispersion surfaces, the Takagi-Taupin equations for a perfect slab.

To calculate the reflection amplitude for the semi-infinite substrate, either (2.60) or

(2.57) with a thickness t much larger than the x-ray extinction depth can be used.

However, using (2.57) can avoid the possible programming problem caused by the “±”

sign choice in (2.60). Once the reflection amplitude for the substrate is known, the total

field in the films can be calculated by using (2.4) and the recursion formulae (2.6), (2.8)

with the dynamical calculations of (2.57), (2.59), (2.66) and (2.69).
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2.3  XSW analysis

In this section we briefly discuss how the structural information can be extracted

from an XSW analysis. A more complete description is available in Ref. 10 and 16.

We first consider the structural analysis for adsorbates and buried thin layers. In this

case the atoms we try to locate are either on the surface or distributed over a range in

depth that is much smaller than the extinction length of the primary beam. We can thus

ignore the exponential factor in (2.4). If we only consider using the XSW generated by

the semi-infinite substrate, the amplitude ratio |XH|2 in (2.4) can be replaced by the

reflectivity R at the surface. Based on the dipole approximation, the total fluorescence

yield for a fluorescent species j, which is proportional to the atom density of the

fluorescent species and the total D-field intensity, can be expressed as

Y = YOB ρa
j r( ) 1+ R + 2 R cos υ − 2πH ⋅r( )[ ]Vuc∫ dr

    = YOB 1+ R + 2 R ρa
j r( )cos υ − 2πH ⋅r( )

Vuc∫ dr 
 

 
 
 , (2.70)

where ρa
j(r) is the normalized atomic distribution function for the fluorescent species

with all the atoms projected back into a bulk unit cell (i.e., ρa
j r( )

Vuc∫ dr =1) and YOB is

the off-Bragg yield. Notice that in (2.70) only the cosine term varies rapidly over a unit

cell. The reflectivity R is treated as a constant of z on this length scale. Eq. (2.70) can be

reduced to
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Y = YOB 1 + R + 2 RRe eiυℑH ρa
j r( )[ ]( ){ } (2.71)

    = YOB 1 + R + 2 RfH cos υ − 2πPH( )[ ]  , (2.72)

where ℑH ρa
j r( )[ ] = ρa

j r( )e2πiH⋅rdr
Vuc∫  is the Hth Fourier component of ρa

j(r) in (2.71). In

(2.72) fH = ℑH ρa
j r( )[ ]  and 2πPH =Arg ℑH ρa

j r( )[ ]{ } . fH and PH are commonly known as

coherent fraction and coherent position. As described in (2.71) and (2.72), they are the

amplitude and phase, respectively, of the Hth Fourier component of ρa
j(r).

In a typical XSW measurement, R and Y are recorded simultaneously as functions

of the incident angle θ through a Bragg peak. During the data analysis, the measured

rocking curve is fitted with the dynamical theory (2.60) to determine the angular scale

(i.e., θB). The agreement between the experimental and the theoretical rocking curve

width and maximum reflectivity is crucial in the subsequent analysis of the yield. This

relies on the high quality of the substrate crystal. Based on the best fit of the rocking

curve, the fluorescence yield is then analyzed using (2.72) with YOB, fH and PH as the

fitting parameters. The final structural determination requires further modeling and

triangulation among several reflections. Detailed examples will be discussed in Chapter

5 – 7.

 For XSW studies of bulk instead of monolayer structures, the differences in data

analysis are that (a) the extinction effect of the primary beam needs to be considered and
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(b) the probed atoms also become the atoms generating the probe (i.e., the XSW field). If

we consider the extinction effect in (2.72) we will have

Y θ( ) = YOB 1+ R θ( ) + 2 R θ( )fH cos υ θ( ) − 2πPH( )[ ]L θ( ) , (2.73)

where L(θ) is the effective thickness accounting for the attenuation of both the primary

x-ray field and the secondary fluorescent x-rays. We will have more discussion on (2.73)

in Section 2.4.

2.4  Primary extinction and evanescent-wave emission

In this section we derive the effective thickness L(θ) in (2.73) for the XSW

measurements collecting bulk fluorescence signals. We consider the attenuation effects

for both the primary and secondary x-rays. These results will be applied to experiments

using grazing emission angles.

We first consider the escape depth of fluorescent x-rays from atoms at and below

the surface, which depend strongly on the take-off angle α. With a very small angle α

one can dramatically reduce the depth probed by fluorescence. The gain in surface

sensitivity originates from the evanescent-wave-emission effect demonstrated by Becker

et al. [33] and Lee et al. [36]. As shown in the inset of Figure 2.9(a), emitted x-rays are

refracted on their way out of the sample, just as if they were traveling into the sample

along the reverse path. If the external angle α is at or below the critical angle αc for total
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Figure 2.9 (a) The calculated angular dependence for the escape depth (Z2) and the
surface intensity (IS,2) for As Lα  emission (1.282 keV) from GaAs. The intensity
Iout(α) (= Iout (α, z)dz0

∞

∫ ) is obtained as the product of Z2 and IS,2 (see text). The inset
shows the emission geometry for the secondary x-rays. (b) The calculated angular
dependence of the penetration depth of the primary x-ray for the GaAs(004) reflection
at Eγ = 6.00 keV. This shows the extinction effect.
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external reflection, the real part of the internal angle α' vanishes. Thus for α < αc the

emission is described by an evanescent wave with an exponentially damped depth

measured in nanometers. According to the principle of microscopic reversibility, the

optical theory used for describing the more easily visualized evanescent-wave-

absorption effect can be directly used to calculate the evanescent-wave-emission effect.

Therefore, the intensity Iout of a secondary x-ray from a depth z below the surface can be

expressed as a function of takeoff angle α as:

Iout (α, z)∝ IS,2 (α) ⋅ e
−µ z ,2 (α ) ⋅z , (2.74)

where

IS,2 (α) = 4 1+
ζ(α)2

sin2α
+

2Re(ζ(α))
sinα

 
 
 

 
 
 

-1

 with ζ(α) = sin2α − 2(δ + iβ) . (2.75)

Is,2(α) is the E-field intensity at the surface |E(α,z=0)/E0|2 based on Fresnel theory. The

subscript "2" is used to indicate that the calculations are performed at the secondary

fluorescent x-ray energy. The optical constants δ and β are related to the index of

refraction (n) of the specimen by the definition n = 1 - δ - iβ (or δ = ΓF0’/2 and β =

ΓF0”/2). The exponential damping factor in Eq.(2.74) with

µ z,2 (α) =
4π
2λ2

(2δ − α2 )2 + 4β2[ ]1 / 2 + 2δ − α2{ }1/ 2 (2.76)

[34] accounts for the absorption and extinction of the emitted x-rays. Notice that
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Iout(α,z) is simply the depth profile of the E-field intensity for an externally excited

evanescent wave at this secondary energy. The same profile can not be easily obtained

for an internally excited evanescent wave without applying the microscopic reversibility

principle.

Figure 2.9(a) shows the surface intensity Is,2(α) and the escape depth Z2(α) =

µz,2(α)-1 calculated from Eq.(2.74) and (2.75) for GaAs at As Lα emission energy

(1.282 keV). The surface intensity Is,2(α) is zero at α = 0, reaches its maximum at the

critical angleαc = 2δ  = 1.5° and then approaches unity at high takeoff angles. For an

externally excited evanescent wave, this variation corresponds to the inward motion of

the first antinode of the standing wave created above the surface by total external

reflection. Since the As L emission line is right above the Ga LIII edge (1.116 keV), the

surface intensity maximum is suppressed by absorption (Is,2(αc) = 4 without absorption).

The escape depth Z2(α), has a minimum value of 29 Å at α = 0° followed by an abrupt

rise at α = αc. It eventually approaches (sinα)/µ0,2 for high takeoff angles, where µ0,2 is

the normal absorption coefficient for GaAs. It is this drastic reduction in the escape

depth occurring near the critical angle that makes this technique sensitive to the near

surface atoms with the x-rays emitted deep below the surface unobservable by the

fluorescence detector.

By including the attenuation factor Iin(θ,z) for the primary x-rays, we can express

the θ and α dependence of the exponentially damped envelope of the standing wave

amplitude as
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y(θ,α, z) = I in (θ,z) ⋅ Iout (α, z) ∝ IS,2 (α) ⋅ e
−[µ z,1 (θ )+ µ z, 2 (α )]⋅z . (2.77)

Based on dynamical diffraction theory [35] the effective linear absorption coefficient

µz,1(θ) in Eq.(2.77) is:

µ z,1(θ) =
µ0,1
sinθB

1 +
FH″

F0″
DH(θ)
D0

 

 
  

 
 
′

+
FH′

F0″
DH(θ)
D0

 

 
  

 
 
″ 

 

 
 

 

 

 
 

, (2.78)

where µ0,1 is the normal absorption coefficient for the primary x-ray and θB is the Bragg

angle for the H reflection. DH(θ)/D0 is the D-field amplitude ratio (2.60). FH and F0 are

the structure factors for the H and the zeroth order reflections. The notations prime and

double prime used in Eq.(2.78) represent the real and the imaginary parts of complex

quantities, respectively, and the subscript "1" is used to denote the primary beam.

Physically, the first term in Eq.(2.78) corresponds to normal absorption. The second

term corresponds to anomalous absorption, which accounts for the strengthening and

diminishing of the photoelectric absorption due to the motion of the standing wave field

with respect to the atomic planes.  The last term accounts for the primary extinction

effect. The penetration depth Z1(θ) = µz,1(θ)-1 for the GaAs(004) reflection at Eγ = 6.0

keV is depicted in Figure 2.9(b). A minimum Z1 (or extinction depth) of 0.8 µm can be

found at the center of the rocking curve. This is about 200 times greater than the

minimum escape depth for the evanescent wave emission effect described in Figure

2.9(a).
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With the angular and depth distribution of the fluorescence yield described by

Eq.(2.77), the total yield observed by the detector [Eq.(2.73)] can be obtained through

the integration of Eq.(2.77) over z and α, which gives the effective thickness L(θ) as:

L(θ) = y(θ,α, z)dzdα
0

∞

∫α l

αu

∫ =
1
LOB

IS,2 (α)
µz ,1(θ)+ µz ,2(α)

dα
α l

αu

∫ , (2.79)

where the constant LOB is an integration factor which normalizes L(θ) to unity at the off-

Bragg (OB) condition where R(θ) = 0 and µ z,1(θ) = µ0,1/sinθΒ. The necessity of the

integration over takeoff angle α in Eq.(2.79), which must be carried out numerically,

depends on the instrumental resolution of angle α or the width Δα = αu - α l, and the

center position α0 of Δα. It can be avoided and replaced with its integrand calculated at

α0 if α0 is far above the critical angle αc or if Δα is small compared to αc. This can be

understood by plotting the integrand Is,2(α) / [µz,1(θ) + µz,2(α)] ≈ Is,2(α)/µz,2(α) as a

function of α. This is plotted as the Iout(α) curve in Figure 2.9(a).

An example using (2.79) to measure the strain induced GaAs cap displacement of 1

ML InAs buried in GaAs(001) will be discussed in Chapter 7.

2.5  Simulations and experimental results: PbTiO3 thin film XSW

We tested out the above dynamical theory by performing XSW measurements on a

PbTiO3(001) thin film. The details of the experimental setup and the background



42

Figure 2.10  The PbTiO3  perovskite unit cells of the up and down polarization states.
The atomic coordinates are listed below.

SrTiO3 Cubic, a = b = c = 3.905 Å

Sr = 0,0,0; Ti = 1/2,1/2,1/2
O = 1/2,1/2,0; 1/2,0,1/2; 0,1/2,1/2

PbTiO3 (up) Tetragonal, a = b = 3.905 Å, c = 4.156 Å
Pb = 0,0,0.1159; Ti = 1/2,1/2,0.5769

O = 1/2,1/2,0; 1/2,0,1/2; 0,1/2,1/2

PbTiO3 (down) Tetragonal, a = b = 3.905 Å, c = 4.156 Å
Pb = 0,0,-0.1159; Ti = 1/2,1/2,0.4231

O = 1/2,1/2,0; 1/2,0,1/2; 0,1/2,1/2
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information will be report elsewhere [9]. Here we place our emphasis on the theoretical

part of the XSW simulations and data analysis.

Bulk PbTiO3 is known to be a ferroelectric material with the perovskite structure.

By displacing the Pb and Ti cations relative to the O2- sublattice, the unit cell can exhibit

either up or down polarization, as depicted in Figure 2.10. This results in the coexistence

of small up and down domains in bulk PbTiO3 crystal. However, it has been

demonstrated recently that single crystal ferroelectric thin films can be grown with a film

thickness well below the typical bulk domain size. It is therefore possible to use the

standing wave field generated by a PbTiO3 thin film, or thin-film XSW, to determine the

polarization of the film.

A sample with a 400 Å thick PbTiO3 film grow by metal-organic chemical vapor

deposition (MOCVD) on a SrTiO3(001) substrate was used in this measurement. The

XSW experiment was carried out using the 5ID-C undulator station at the DND CAT at

the Advanced Photon Source (APS). The PbTiO3(001) reflection was employed to

generate the standing wave field. The Pb L and Ti K fluorescence yields were recorded

at incident energies of 13.5 keV and 8.00 keV, respectively. To measure the Ti position

in the film, we reduced the emission take-off angle αu to about 0.5° using a  fluorescence

slit to eliminate the Ti K signal from the SrTiO3 substrate.

Figure 2.11(a) shows the calculated rocking curve (|XH|2) as a function of q for a

semi-infinite SrTiO3(001) substrate at Eγ = 13.5 keV, where q = 4πs inθ /λ  is the

momentum transfer normal to the surface. The calculation was based on Eq. (2.57) with

a thickness t = 100 µm. It can be shown that the classical dynamical theory (2.60)
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Figure 2.11  The calculated (a) rocking curve, (b) the real and imaginary parts and (c)
the phase of the D-field amplitude ratio at the surface for bulk SrTiO3 (001) reflection
at 13.5 keV.
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Figure 2.12  (a) The D-field amplitude ratio, (c) the incident D-field intensity and (d)
the total D-field intensity at the Ti site calculated at various depths z for the PbTiO3
(001) reflection (13.5 keV) of 400 Å PbTiO3 (polarized up) on SrTiO3(001). (b) shows
the phase of the D-field amplitude ratio at the surface.
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Figure 2.12  (Continued)
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predicts the same rocking curve. Figure 2.11(b) and (c) show the real part, imaginary

part and the phase of XH. The 180° phase shift of XH through the Bragg peak in Figure

2.11(c) leads to an inward movement of the nodes and antinodes of the standing waves.

Notice that XH is independent of z in this case.

Figure 2.12 shows the results of the calculations performed at an incident energy of

13.5 keV for a 400 Å thick PbTiO3 film of up polarization state on a SrTiO3(001)

substrate. In Figure 2.12(a) we calculate the reflectivity curves (|XH|2) for the

PbTiO3(001) reflection at various depths z. Both the reflected intensity and the

modulation frequency depend strongly on z. Figure 2.12(b) shows the phase of XH

calculated at the surface. It indicates that the phase shift is more than 180° over the

Bragg region. In Figure 2.12(c) we calculate the incident D-field intensity |D0|2 = |D0|2 at

various depths. The primary extinction effect near the PbTiO3(001) reflection is evident

even within 400 Å below the surface. It can be proved that away from the Bragg angle in

Figure 2.12(c) the incident field intensity approaches to e−µ 0z / γ 0 , where µ0 = 2πΓF”/λ is

the normal absorption coefficient of the film. Figure 2.12(d) shows the total D-field

intensity calculated at the Ti site as a function of z. It suggests that in order to account

for the total fluorescence yield correctly it is necessary to integrate the total D-field

intensity over the entire film thickness. This is not only because of the extinction effect

of the primary beam, as is the case for a semi-infinite crystal, but also the result of strong

dependence of |XH|2 on z.
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Figure 2.13  The total D-field intensities at the Pb site near the PbTiO3 (001)
reflection for a 415.6 Å PbTiO3(polarized up) thin film at various depths z. The solid
curves are calculated based on the dynamical theory developed in this work. The
dashed curves are based on a kinematical approach (2.80).
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Figure 2.14  XSW data and best fits for the reflectivity and (a) Pb L and (b) Ti K
fluorescence yields for 400 Å PbTiO3 on SrTiO3(001). The measurements were carried
out at 13.5 keV for (a) and 8.00 keV for (b). The data was fitted with the dynamical
theory derived in this work. The best fits showed that the PTO film carried a single
“up” polarization state.
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We next compare the present dynamical calculation with the kinematic theory.

Figure 2.13 shows the total D-field intensities calculated at the Pb site for various depths

z around the PbTiO3 (001) reflection for a 415.6 Å thick, free standing PbTiO3 film of up

polarization. The solid curves are based on the dynamical theory derived in this work.

The dashed curves are based on a kinematic approach, where in Eq. (2.4) we replace

4πK0” by µ0/γ0 and use the following formula for XH

XH(N, q) =
i4πre
a2q

F(q) 1− e
− cN(iq +

4πµ 0

λq
)

1 − e
−c (iq +

4 πµ0
λq

)
. (2.80)

In (2.80) a and c are the lattice constants, and Ν is the number of unit cells along the c

axis (i.e., z = 415.6 – Nc). This comparison shows that the kinematic theory is able to

render the correct phase for the D-field amplitude ratio, but it does not predict the

intensity correctly close a Bragg reflection due to the extinction effect. The use of

dynamical theory for a thin-film XSW analysis becomes more necessary as the film

thickness increases.

We now discuss the experimental results in Figure 2.14. Figure 2.14(a) show the

data and best fit of the reflectivity and Pb L fluorescence yield. In fitting the

fluorescence data, four free parameters were used: YBO, f, P and a surface miscut angle φ,

but the PbTiO3 lattice used for the structure factor calculation was fixed by the bulk

atomic coordinates listed in Figure 2.10 for the “up” polarization state (i.e., the fitting
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process was not self-consistent). However, the Pb coherent position determined from the

best fit (0.117) showed excellent agreement with the bulk position (0.116). No good fit

can be attained if we fixed the structure factor using the bulk coordinates of the “down”

polarization state. Based on this observation and the high coherent fraction (0.849) we

concluded that the lattice of this 400 Å thick, as-grown PbTiO3 film was perfectly

aligned to exhibit a single up polarization state. Also shown in Figure 2.14(a) is the

theoretical Pb fluorescence yield curve for the down state (dashed line). This

demonstrates the sensitivity of this measurement. The results based on a more rigorous

fitting procedure, as discussed in Section 2.3, will be reported in Ref. 9.

Figure 2.14(b) shows the Ti data and the best fit. Since the take-off angle αu was

below the critical angle for PbTiO3 at the Ti K energy, the contribution to the Ti yield

from the SrTiO3 substrate was ignored (i.e., the more complicated analysis described in

Section 2.4 was unnecessary). This measurement confirmed that the film was in a single

up polarization state. Notice that (a) the modulation of the Ti fluorescence yield is nearly

180° out of phase from that of the Pb yield and (b) the Ti (001) XSW measurement

shows greater contrast between the up and down polarization states.



Chapter 3 Experimental

3.1  X15A (NSLS)

Most of the XSW measurements in this thesis work were conducted at bending

magnet beamline X15A of the National Synchrotron Light Source (NSLS) at

Brookhaven National Laboratory (BNL). The beamline is equipped with a double-crystal

monochromator for tuning and scanning the incident x-ray energy, a slit and ion

chamber systems for defining the beam size and monitoring the beam intensity, as well

as a Huber two-circle diffractometer including a reflectivity and a solid-state

fluorescence detector systems for open-air XSW and low-angle reflectivity

measurements. The optics of the beamline is also capable of x-ray extended absorption

fine structure (EXAFS) experiments.

For in situ XSW and EXAFS measurements there was a multi-chamber ultra high

vacuum (UHV) system behind the Huber 2-circle diffractometer. The UHV facility (base

pressure ~ 9× 10-11 torr) consisted of a molecular beam epitaxy (MBE) system coupled

with a LEED/AES chamber and an XSW/EXAFS chamber, allowing sample preparation

and in situ surface characterization. Figure 3.1 shows the top view of the UHV system.

A more detailed description and the operational procedures of the X15A beamline and

the UHV facility can be found in Ref. 1 and 2.

A typical XSW measurement at X15A consists of simultaneously recording the

fluorescence spectra and the reflectivity from a sample while scanning the double-crystal

52
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Figure 3.1  Top view of the multi-chamber UHV system at beamline X15A at the
NSLS (it is currently located at the 12ID-D undulator station of the BESSRC CAT at
the APS).
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Figure 3.2  Simulated fluorescence yields for the GaAs(004) reflection at 7.00 keV for
various coherent positions P (see Section 2.3) to demonstrate how the standing wave
field moves with respect to a diffraction plane. The coherent fractions f are all equal to
one.
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monochromator in energy through a hkl  Bragg reflection of the sample substrate. This

eV-wide scan causes the standing wave to phase shift by 180° [Figure 2.11(c)] and move

inward by one-half of the d-spacing relative to the hkl diffraction planes. This movement

induces a characteristic modulation of the fluorescence yield depending on the position

of the fluorescent atoms with respect to the hkl diffraction planes (Figure 3.2). The float

chart in Figure 3.3 illustrates the structure of the XSW data acquisition program (a SPEC

macro).

3.2  5ID-C and 12ID-D (APS)

As the Advanced Photon Source (APS) at Argonne National Laboratory (ANL)

becomes operational, we are increasingly using this third-generation synchrotron to take

advantage of the more brilliant and collimated x-ray beam.  Parts of the experiments that

will be discussed in Chapter 6 (XSW) and Chapter 7 (EXAFS) were conducted at the

12ID-D undulator station of the Basic Energy Sciences Synchrotron Radiation Center

(BESSRC) Collaborative Access Team (CAT) and at the 5ID-C undulator station of the

DuPont-Northwestern-Dow (DND) CAT, respectively, at the APS.

In Figure 3.4 we show a typical XSW experimental setup at the APS. The undulator

is a insertion device composed of a linear array of magnets with alternating polarities.

The electrons circulating inside the synchrotron ring are forced to undergo a rapid

horizontal oscillation while passing through the undulator. The radiation given off in

successive oscillations can interfere constructively. This leads to approximately 100-eV

wide spikes in the radiation spectrum, which are typically 103 times more intense than
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Figure 3.3  A float chart describing the structure of the XSW data acquisition program
used at 5ID-C/APS. In this example the XSW measurement is set to count for 1
second at each step. There are 32 steps per rocking curve scan, 20 scans per saveset
and totally 5 savesets. The multi-channel analyzer (MCA) is set up to have 512
channels per subgroup. Two MCA subgroups (0 and 1) are used alternately for
acquiring the spectra.
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Figure 3.4  Typical experimental setup at the APS for open-air XSW measurements
using bulk Bragg reflections.
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the flux of a bending magnet beamline. The peaks in the undulator spectrum can be

conveniently tuned in energy by adjusting the undulator gap. Due to the high power

density of the undulator beam, the Si(111) double-crystal beamline monochromator is

cooled by liquid nitrogen. For an XSW measurement utilizing bulk Bragg reflections, a

Si(004) channel cut (post monochromator) is often added to further reduce the energy

width ΔE of the incident x-ray and thus increase the precision of the measurement. The

fluorescence slits shown in the figure are for the purpose of limiting the emission takeoff

angle, which can be crucial if surface sensitivity is required (see Section 2.4, 2.5 and

7.4). We have been scanning the angles of the sample stages (driven by micro-stepping

motors) during the XSW experiments at the APS, even though scanning energy is also

possible. For an EXAFS measurement the channel cut, fluorescence slits and reflectivity

detector are removed. The energy scans are achieved by scanning the LN2-cooled

Si(111) monochromator and the undulator gap simultaneously.

The electronic systems at the 5ID-C station are illustrated by the block diagram in

Figure 3.5. Two computers running LINUX operating system are involved. The one

inside the x-ray hutch is installed with all the necessary interface adapters and x-ray

diffraction software (SPEC), controlling data acquisition and more than 40 stepping

motors driving the diffractometers, optical table, slits and post-monochromator stage.

Beamline users control their experiments from the computer outside the x-ray hutch

through the local network and X Window system. The communications between SPEC

and all the devices are conducted mostly through the VME crate and the CAMAC crate.

The VME crate contains a number of stepping motor controllers (B) and a 16-channel
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Figure 3.5  Block diagram of the electronic systems at the 5ID-C undulator station of
the DND CAT at the APS.
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scaler (C). The logical pulses from most of the detector systems are finally counted by

the 16-channel scaler. The CAMAC crate has two digital x-ray spectrometer modules

(G), which are in charge of the data acquisition from a multi-element solid-state

fluorescence detector. Multiple RS232 ports and digital-analog converters are also

available on the computer inside the hutch for serial and analog devices. The LN2-cooled

Si(111) monochromator is currently controlled by DND software. Direct control of the

LN2-cooled Si(111) monochromator from the SPEC at the 5IDC station can be achieved

through the Interprocess Communication (IPC) over the network.

In October 1997 the multi-chamber UHV system at beamline X15A at the NSLS

was moved from BNL to the BESSRC CAT at the APS. The system was reinstalled in

the 12ID-D undulator station in June 1998 (Figure 3.6). Currently the µrad-resolution

incident angle scans for the XSW measurements using bulk reflections are accomplished

by scanning the tilt of the entire 1800-lb UHV system with a custom designed

supporting platform.

In principle scanning the sample and scanning the monochromator (i.e., the energy)

are equivalent for an XSW measurement. However, with the greater source distance at

the APS (e.g., roughly 70 m at the 12ID-D station) and the possibility of using a small

beam to allow dynamical diffraction from an imperfect bulk crystal (e.g., SrTiO3), the

divergence of the incident beam is often determined by the vertical entrance slit size.

This changes slightly the optical considerations as compared with the situation at the

NSLS. Table 3.1 lists the theoretical Darwin widths (or the intrinsic rocking width) ω for
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Figure 3.6  A picture of the multi-chamber UHV system shot right after its installation
at the 12ID-D hutch of the BESSRC CAT at the APS. The UHV system rested on a
custom-designed supporting platform. The four persons in the picture are (left to right)
Paul Lyman, Alexander Kazimirov, Mike Bedzyk and myself. The picture was shot by
Osami Sakata.
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the (111), (004) and (008) reflections of Si at 12.00 keV based on the following equation

deduced from (2.51):

ω =
2ΓFH'
b sin(2θB)

(3.1)

Figure 3.7(a) shows the DuMond diagram considering the three reflections. The x axis

denotes the incident angle θ in µrad and the y axis is the wavelength in 10-6 Å. The

stripes represent the conditions where a Bragg diffraction is allowed by the dynamical

theory. The slopes of the stripes can be estimated by Bragg's law as

Δλ

Δθ
= 2dH cosθB . (3.2)

Therefore, the slope is completely determined by the d-spacing dH of the reflection. Also

shown in Figure 3.7(a) are the diffraction-allowed areas restricted by the APS source

divergence (11 µrad) and a 100-µm vertical entrance slit size at a source distance of 50

m (without considering the source size). The overlaps between these conditions with a

Si(004) channel cut are indicated by the shaded and dark areas. Figure 3.7(b) and (c)

show the difference between scanning a Si sample [(b)] and scanning a Si(004) channel

cut (the post-monochromator) [(c)] for the sample (111) reflection considering only the

angular restrictions by the entrance slits. It is clear in Figure 3.7(c) that due to the d-
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Figure 3.7  (a) A DuMond diagram considering the Si(111), (004) and (008)
reflections at 12.00 keV. Also shown are the angular ranges due to the APS source
divergence (11 µrad) and a 100-µm vertical slit size (2 µrad). (b) and (c) are a
comparison  in DuMond diagrams between scanning a Si sample [(b)] and scanning a
Si(004) channel cut (the post-monochromator) [(c)] for measuring the sample (111)
reflection with a 100-µm vertical slit size.
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spacing mismatch between the (111) and (004) reflections, scanning the Si(004) channel

cut will measure a sample rocking curve width of (Δλ/Δθ)Si(111)/(Δλ/Δθ)Si(004) = 2.5 times

that of ωSi(111), while scanning the Si(111) sample in this case yields the correct width.

Since the intersection of the vertical slits and the Si(004) channel cut is very small in the

wavelength direction, it is unnecessary to eliminate the dispersion due to the d-spacing

mismatch by changing the post-monochromator crystal to match the d-spacing of the

sample.

Table 3.1  Calculated Bragg angles θB, Darwin widths ω, d-spacing dH and the

slope Δλ/Δθ for the Si(111), (004) and (008) reflections at 12.00 keV [see Eq. (3.1) and

(3.2)]

Si
(Eγ = 12 keV) θB (deg) ω (µrad) dH (Å) Δλ/Δθ (Å)

(111) 9.48 22 3.14 6.19
(004) 22.36 10 1.36 2.52
(008) 49.55 3.5 0.68 0.88



Chapter 4 Reconstructions of Clean GaAs(001) Surface

4.1 Introduction

The interest in studying semiconductor surfaces and interfaces originated from the

desire for understanding the physics behind the rectifying behavior of metal-

semiconductor contacts, which has been widely applied in power rectification based on

cupreous oxide since the beginning of this century [1]. With the remarkable advances

made in ultra-high vacuum and thin film growth technologies in the past fifty years,

surfaces and interfaces of semiconductors as well as many other materials can now be

studied in well-controlled environments using probes with atomic resolution and sub-

monolayer sensitivity. Research of this kind has led not only to a better understanding of

the fundamental properties of solid surfaces but also to possibilities of synthesizing

novel nanometer-scale heterostructures for future applications.

Figure 4.1  The crystal structure of bulk GaAs. The cubic unit cell contains 4 Ga and 4
As atoms.

65
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GaAs has a zinc-blende crystal structure (Figure 4.1). In the [001] direction the

GaAs lattice is constructed by stacking alternately Ga and As atomic planes with a

separation of d004 = 1.41 Å. The [001] axis therefore represents a polar direction. The

Ga-As chemical bond is primarily covalent with a slight ionic character. The band gap of

GaAs is direct with an energy of 1.42 eV at room temperature [2]. The electron mobility

of doped bulk GaAs is 8500 cm2/Vs at room temperature [2]. This is more than five

times higher than that of Si. The direct band gap and high electron mobility have made

GaAs an important semiconductor material for manufacturing optoelectronic devices,

high-speed transistors and telecommunication devices.

Figure 4.2  The ideally bulk terminated GaAs(001) surface.

When a semiconductor free surface is created, the ideal bulk termination is

energetically unstable due to the highly directional covalent bonds broken at the surface

(Figure 4.2). The surface energy can be reduced through relaxation and reconstruction.

The former involves slight displacements of the near surface atoms from their bulk

positions (primarily along the surface normal direction), but the surface lattice retains the
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lateral periodicity of the bulk. The latter involves more severe alteration of the ideal

structure. It is characterized by the reduction of the surface symmetry, which usually

results from the formation of new chemical bonds and surface defects. The GaAs(110)

surface, for example, was found to be only relaxed [3]. However, a number of rather

complicated reconstructions have been observed for the GaAs(001) surface. In either

case unique surface electronic states are present due to the termination of bulk

symmetry.

4.2 Electron counting model

As pointed out by Duke [4], semiconductor surface reconstructions are, in general,

driven by two dominant factors: saturation of chemical bonding and surface charge

neutrality. For a compound semiconductor, these usually imply that the surface has a

different stoichiometry from the bulk, which in turn adds a great complexity to the

surface structure determination. Efforts have been made by several groups [4 - 9] since

the 1970s to establish general rules for surface reconstruction of compound

semiconductors. In proposing structural models for a surface, these rules can serve as

simple tests for finding the most stable configuration among the competing candidates,

before highly sophisticated theoretical calculations are carried out. They also help

explain why certain features are commonly observed on these surfaces.

Figure 4.3(a) shows schematically the successive steps for constructing the energy

states of bulk GaAs through linear combinations of atomic orbitals [6, 10]. Beginning

with the atomic 4s and 4p levels of Ga and As, linear combinations of s and p wave
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Figure 4.3  Energy-level diagrams for GaAs in the bulk (a) and at the surface (b),
based on linear combinations of Ga and As atomic orbitals (see Ref. 10).
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functions create the highly directional sp3 hybrid orbitals (εh
Ga and εh

As), which determine

the tetrahedral bonding geometry of the crystal. As the atoms are brought together, the

wave functions of two adjacent Ga and As sp3 states overlap, and a further linear

combination of them leads to the formation of the bonding (εb) and antibonding states

(εa). A Ga-As chemical bond is then formed by filling the bonding state with two valence

electrons and keeping the antibonding state empty. In this process the total energy is

reduced drastically in comparison with the energy levels of the hybrid orbitals for

isolated Ga and As atoms. Finally, the bonding and antibonding states broaden into the

valence band and conduction band, respectively, as the volume of the GaAs lattice

increases.

The electronic structure and bonding geometry at a semiconductor surface are

generally far more complicated than those in the bulk. The termination of a lattice

interrupts the bulk translational symmetry. As shown in Fig. 4.2, the creation of an ideal

bulk-terminated GaAs(001) surface reduces the coordination number from 4 to 2 for

each surface atom. This leaves behind two broken bonds per atom on the surface called

dangling bonds, each containing only one unpaired electron (or more rigorously

speaking, 5/4 and 3/4 electrons for As and Ga termination, respectively). The energy

levels of these dangling bonds can be estimated from those of the sp3 hybrid orbitals for

isolated Ga and As. The number of dangling bonds, and thus the surface energy, can be

reduced if the atoms on the surface form chemical bonds with their second nearest

neighbors in the surface plane. This leads to the dimerization of the surface. The bonding

and antibonding states for these Ga-Ga and As-As dimers should be, again, linear
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combinations of the atomic sp3 hybrid orbitals for Ga and As, respectively, as suggested

in Fig. 4.3(b).

For the hybrid orbitals that do not form bonds on the surface, Fig. 4.3(b) shows that

the sp3 energy level of Ga is above the conduction-band minimum of bulk GaAs, and the

sp3 energy level of As is below the bulk valence-band maximum. Therefore, a

semiconducting surface can be achieved if all the As dangling-bond states are filled and

all the Ga dangling-bond states are empty. Any partially filled dangling-bond orbital, on

the other hand, would lead to a metallic surface. However, a semiconducting termination

is energetically more favorable to the formation of dimer structures. This can be

explained by a theory developed by Peierls [11] in 1930, which states that a one-

dimensional lattice with a metallic electronic structure is unstable and will turn

semiconducting through a distortion of the lattice (Peierls distortion). Since the (001)-

oriented semiconductor surfaces are usually characterized by chains of dimers parallel to

the [1 10]  or the [110] directions, which have a one-dimensional nature, Peierls’ finding

is applicable here.

Using the above argument, Pashley [7] concluded that the stable reconstructions of

semiconductor surfaces correspond to those electronic structures where the dangling-

bond states in the valence band are completely filled by all available electrons and the

dangling-bond states in the conduction band are left empty (Figure 4.4). Apparently, this

requirement can only be satisfied by certain surface compositions. The significance of

this so-called electron counting model is therefore that it can be used to determine the

allowable stoichiometries of compound semiconductor surfaces. Moreover, for a given
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Figure 4.4  Filled and empty dangling bonds predicted by the electron counting model
in an As- (a) and a Ga- (b) terminated GaAs(001) surface.



72

 composition, this model implies that in the surface layer each 3-fold-coordinated

electropositive atom will have to give up one (or 3/4) electron back to a 3-fold-

coordinated electronegative atom. This charge transfer is important in maintaining an

electrically neutral surface. For a polar surface such as the GaAs(001) surface,

depending on whether it is terminated with As or Ga, positive or negative charges can be

accumulated in the top layer if the surface remains unreconstructed. This is due to the

fact that the Ga-As bond is slightly ionic. It can be shown that the surfaces with

stoichiometries satisfying the electron counting rule will be automatically neutral. This

provides another physical explanation for why semiconductor surfaces reconstruct. The

application of the electron counting model will be demonstrated for the GaAs(001)

(2×4)/c(2×8) reconstruction in Section 4.3.2.

4.3  Reconstructions of GaAs(001) surface

A variety of reconstructions have been observed on clean GaAs(001) surfaces. The

structures of these reconstructions strongly depend on surface stoichiometry, which is

determined by preparation conditions such as substrate temperature and As and Ga

partial pressures. More than five different GaAs(001) phases have been reported under

ultra-high vacuum conditions, ranging from the most As-rich c(4× 4) to the most Ga-rich

(4× 6) reconstruction. Owing to the complexity introduced by the uncertainty of surface

composition and the ionic nature of the Ga-As bond, the detailed structures of some of

the reconstructions are still under debate, despite considerable experimental and

theoretical investigations of this system. Therefore, new evidence is needed to clear up
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the controversy. It is expected that the complete determination of the GaAs(001) surface

structures will continue to be a subject of wide interest in the future.

In the following sections we briefly review some of the observed reconstructions

and the proposed models for the GaAs(001) surface with special emphasis on the (2×4)/

c(2×8) structure.

4.3.1  (2×4)/c(2×8)

Among all the known GaAs(001) surface reconstructions, the (2×4)/c(2×8) is

perhaps the most important and intensively studied one. For most optical and electronic

devices fabricated on GaAs(001) substrates using molecular beam epitaxy, growth is

usually started with this surface structure.

Earlier studies [12 - 18] of the GaAs(001) surface focused on finding the

dependence of the various surface symmetries on the Ga and As coverages. It was

observed that the GaAs(001) surface exhibited a (2×4)/c(2×8) symmetry over a wide

temperature range between 400 and 650 °C, depending on the Ga and As impingment

rates [12, 16]. Compared to the other (001) reconstructions, it appeared that the

formation of this structure was preferred at a lower substrate temperature for a constant

As flux, or a higher As flux at a fixed substrate temperature. The (2×4)/c(2×8)

termination was therefore characterized as the As-stabilized surface. Several studies [12

- 16] using reflection high-energy electron diffraction (RHEED) demonstrated that the

2× period is parallel to the [1 10]  direction, which is consistent with the direction of the
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As dangling bonds, and the ×4 period is parallel to the [110] direction. The first attempt

to interpret the (2×4)/c(2×8) symmetry was made by Cho [16]. He suggested that the 2×

period observed in the RHEED pattern was due to dimerization of the surface As atoms,

in analogy to the Si(001) (2×1) reconstruction. Due to the difficulty in data analysis,

during 1970s and early 1980s RHEED was mainly used to establish surface symmetries

and monitor MBE growth. Most of the information from RHEED studies on

semiconductor surfaces remained qualitative.

The As coverage of the (2×4)/c(2×8) surface has been characterized by Auger

electron spectroscopy (AES) [17 - 19], photoemission spectroscopy (PES) [18, 20 - 22]

and high-resolution electron-energy-loss spectroscopy (HREELS) [23]. By normalizing

the intensity ratios between the As (~ 31 eV) and Ga (~ 55 eV) MNN Auger peaks

measured on a GaAs(001) surface to the ratio measured on a (110) cleaved surface,

Drathen et al. [17] determined the As coverage for the (2×4)/c(2×8) reconstruction to be

0.6 ML. Later in a PES investigation, Bachrach et al. [20, 21] obtained a slightly higher

As coverage (7/8 ML) for the same reconstruction by measuring the area ratio between

Ga and As 3d core level peaks. In a more recent HREELS study of the vibrational

spectra of chemisorbed atomic H on the GaAs(001) surface, Frankel et al. [23] showed

that both As-H and Ga-H species were present on the (2×4)/c(2×8) surface. This finding

suggested the presence of As dimer vacancies, which could expose the Ga dangling

bonds in the second layer. Thus, it also ruled out the possibility for the (2×4)/c(2×8)

surface being terminated by a full ML of As dimers.
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The electronic structure of the (2×4)/c(2×8) surface has been probed by HREEL [24

- 26], work function measurements [18] and angle-resolved photoemission spectroscopy

(ARPES) [22, 27]. The purpose of these studies was to identify the surface states

associated with the As and Ga dangling bonds. Due to the complexity of the surface

structure and the relatively weak surface emissions, consistency between experimental

data was poor. Ludeke and Koma [25] measured the low energy electron energy loss

spectra for a variety of the GaAs(001) reconstructions, including the polar {111}, (001)

and nonpolar (110) surfaces. They located empty surface states at about 0.9 eV above

the bulk valence band edge and filled surface states at 0.5 – 2 eV below the valence band

edge. They attributed the former to the Ga dangling bonds and the latter to the As lone

pairs. Massies et al. [19] measured the work function of the GaAs(001) surface using

contact potential difference (CPD). For a given (001) surface structure, they found no

significant work function changes between n and p type substrates, indicating that the

Fermi level was pinned by a high density of empty and filled surface states. The CPD

measurements carried out on different reconstructed surfaces showed that the work

function had strong dependence on the surface stoichiometry and structure.

Using ARPES with synchrotron radiation, Larsen et al. [27] mapped out the surface

energy band for the GaAs(001) (2×4)/c(2×8) surface. They found that the surface states

were mostly in the energy range between –3 eV and the valence band maximum with

very weak energy dispersion. The origin of these surface states was examined

theoretically by tight binding calculations. They concluded that the (2×4) surface

contained asymmetric As dimers with an As coverage of one ML. However, the surface
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stoichiometry of their model was inconsistent with the previous measurements [17, 20,

21], and the evidence in their APRES data supporting the buckling of the As dimer was

rather unclear. Later Chiang et al. [22] reported another ARPES measurement on the

same surface structure, as well as on several other reconstructed GaAs(001) surfaces.

Their study showed that the Fermi level was 0.55 eV above the valence band maximum

for all the reconstructions. In their angle-resolved measurements they found that only

peaks related to transitions from the GaAs bulk valence bands were observed in their

spectra, which suggested that transitions due to the surface states were relatively weak

for the GaAs(001) surface, in contrast to the strong surface-state emission of Si and Ge

surfaces.

Theoretical studies have been carried out since 1970s to predict the structural and

electronic properties of compound semiconductor surfaces. Owing to lack of information

about the atomic structures, earlier calculations [28 - 32] for the GaAs(001) surface

electronic structures were conducted primarily assuming an ideal, unreconstructed (1×1)

As or Ga termination. Mainly empirical methods such tight-binding approach were used

because of limited computing power. It was first pointed out by Appelbaum et al. [28]

that the minimum area for a reconstructed GaAs(001) unit cell to achieve a nonmetallic

surface was four times the substrate (1×1) unit cell. This was based on the argument that

for the (1×1) ideal surface each As (Ga) dangling bond contained 5/4 (3/4) electrons;

four As (Ga) atoms per surface unit cell will provide an odd number of electrons, which

eliminates the possibility of having half-filled surface bands. Later tight-binding energy-

minimization calculations by Chadi et al. [31] and ab initio pseudopotential
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Figure 4.5  The structural models proposed by Chadi [33] for the GaAs(001) (2×4)
reconstruction with (a) 3 As dimers in the first layer and (b) two As dimers in the first
layer and the third dimer in the third layer.
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Figure 4.6  The GaAs(001) c(2×8) unit cells constructed from (a) the three-dimer and
(b) the two-dimer (2×4) models proposed by Chadi (see Figure 4.5).
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 calculations by Ihm et al. [32] showed that the dimerization of As atoms on the

GaAs(001) surface reduced the total energy by about 1 – 2 eV/dimer.

In an important article published in 1987, Chadi [33] evaluated theoretically a

number of structural models for the GaAs(001) (2×4) surface. Based on his tight-

binding-based total-energy calculations, he concluded that it was most likely that the

surface contained three As dimers per unit cell. The two possible structures he

considered are shown in Figure 4.5(a) and (b), each with an As coverage of 0.75 ML.

The model in (a) has all three As dimers in the outermost layer, while the model in (b)

has one of the As dimers in the third layer in the trench area (i.e., two As dimers and two

missing dimers in the outermost layer). Chadi’s calculations also indicated that the As

dimers should be symmetric for these two (2×4) models. This was the first theoretical

evidence suggesting that the ×4 symmetry along the [110] direction observed by LEED

and RHEED was due to As dimer vacancies instead of asymmetric As dimers. The

surface electronic states calculated by Chadi for this two models showed also good

agreement with the ARPES measurement by Larsen et al. [27]. A c(2×8) unit cell can be

constructed based on either of the two (2×4) models by shifting an As dimer row along

the [1 10]  direction by a (1×1) lattice constant, as shown in Figure 4.6(a) and (b).

Significant progress in understanding the structures of the GaAs(001) surface came

after the invention of scanning tunneling microscopy (STM) in 1982. The first STM

image of the (2×4)/c(2×8) surface was published in 1988 by Pashley et al [34, 35]. Their

micrographs showed that the surface can be characterized by bright blocks forming
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bands parallel to the [1 10]  direction, which corresponded to the As dimer rows. These

bands were 16 Å apart in the [110] direction, leading to the four-fold spots observed in

the LEED pattern. The width of the bands was estimated to be 12 Å, in good agreement

with the missing dimer model in Figure 4.5(a). The bright blocks had a periodicity of 8

Å in the [1 10]  direction, corresponding to the two-fold spacing of the (2×4) unit cell.

The c(2×8) structure, resulting from the presence of antiphase boundaries (Figure 4.6),

was also found on the surface. Their images over larger areas revealed islands made up

of complete unit cells and elongated along the [1 10]  direction. In a later STM study,

Biegelsen et al. [36] confirmed Pashley’s observation. They showed in addition that the

(2×4) surface tended to have unit cells with two As dimers and two missing dimers after

annealed longer or at slightly higher temperature.

The dispute over the detailed atomic structures for the GaAs(001) (2×4)

reconstruction had just begun. Farrell and Palmstrφm [37] reported surface stoichiometry

studies using RHEED. They observed that the intensity of the 2/4th diffraction peak

varied through three different stages as the surface was annealed from 500 to 600 °C at a

constant As4 flux while the RHEED pattern maintained essentially a (2×4) symmetry.

They thus subdivided the (2×4) reconstruction into α, β  and γ  phases in order of

decreasing annealing temperature, where the β phase showed equal intensity among all

the fourfold fractional peaks and the α and γ phased had a relatively weak 2/4th order

peak. Within in the kinematic approximation, they calculated the diffraction intensities

for (2×4) unit cells with different number of As dimers and compared the
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Figure 4.7  The structural models for the GaAs(001) (2×4) (a) α, (b) β and (c) γ
phases proposed by Farrell and Palmstrφm [37] based on the relative intensities of the
RHEED fractional peaks.
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result with the existing models [23, 33 – 35, 38]. They concluded that the α phase

[Figure 4.7(a)] had two As-dimers per (2×4) unit cell in the top layer (θAs = 0.5 ML) with

the exposed second-layer Ga atoms dimerized along the [110] direction, as proposed by

Harbison and Farrell [38]; the β phase [Figure 4.7(b)] had three As-dimers in the top

layer (θAs = 0.75 ML), as proposed by Chadi [33] and by Harbison and Farrell [38];

while the γ phase was the β phase with additional As dimers adsorbed on top (θAs > 0.75

ML) [Figure 4.7(c)].

The first ab initio pseudopotential total-energy calculations applied to the

GaAs(001) (2×4) surface using local density approximation were carried out by Ohno

[39] and by Northrup and Froyen [40] in 1993. In both efforts the surface formation

energies for various (2×4) structures were calculated as functions of the As or Ga

chemical potential, which is directly related to the surface stoichiometry. Ohno’s

calculations showed that the threefold-coordinated Ga atoms in the two (2×4) models

considered by Chadi (Figure 4.5) tended to relax significantly towards the As dimers

[Figure 4.8(b) and (c)]. This relaxation broadened the surface energy gap, leading to

complete charge transfer from the Ga dangling bonds to the As dangling bonds and thus

a more stable structure. In addition, the formation energy for the β phase was found to be

slightly lower than the two-As-dimer structure with a third dimer in the trench. Northrup

and Froyen reported that under As-rich conditions a mixture of (2×4)-β and c(4×4)

phases (see section 4.3.3) would be energetically more favorable than forming a single

phase of the (2×4)-γ structure proposed by Farrell and Palmstrφm [37]. Their
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Figure 4.8  The relaxed structural models for the GaAs(001) (2×4) (a) α, (b) β and (c)
β2 phases based on theoretical calculations [39, 40, 48]. The calculations predicted
severe relaxation for all the 3-fold coordinated Ga atoms, especially the atoms in the
first two layers of the α structure (due to the formation of the Ga dimers).
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calculations also showed that for the α phase [Figure 4.7(a)] the atoms in the first two

layers were expected to undergo large lateral displacements along the [110] direction

(0.4 – 1.2 Å) to accommodate the strain induced by the formation of the Ga dimers in the

second layer [Figure 4.8(a)]. However, these two ab initio calculations reached opposite

conclusions regarding the stability and the formation of the Ga dimers for the (2×4)-α

phase.

In later ab initio calculations, Northrup and Froyen [8] included the two-As-dimer

model depicted in Figure 4.5 proposed by Chadi [33], and referred to it as the β2 phase.

Since the β2 structure can be constructed from the β phase by removing two As and two

Ga atoms per (2×4) unit cell, it was expected that the difference between the surface

formation energies of these two phases depended only on the sum of the As and Ga

chemical potentials, which should be a constant under the condition of equilibrium with

the bulk. Their calculation showed that the energy of the β2 phase was, regardless of the

value of the Ga (As) chemical potential, 0.05 eV per (1×1) unit cell lower than the β

phase, contrary to Ohno’s results. Based on their findings Northrup and Froyen ruled out

the possibility for the β structure being a stable phase. This conclusion supported the two

As dimers observed by several more recent STM studies [36, 41, 42]. In addition, they

found that the presence of the lower-energy states introduced by the β2 phase also made

the chemical potential window extremely narrow for the α phase to be stable.

Further experimental evidences regarding the structures of the three different (2×4)

phases were provided by Hashizume et al. [43, 44] based on STM and RHEED. Their
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high-resolution STM images showed clearly that all three phases had two As dimers and

two dimer vacancies in the outermost layer. However, the three phases were

distinguishable in their domain sizes and depth profiles: The β phase tended to form

larger domains containing no kinks; the depth measured by the STM tip in the dimer

vacancy regions for the α phase was twice as deep as those for the β and γ phases; the γ

phase was best characterized by the large open space (wider than 16 Å) separating the

As dimer rows in the first layer. Their measured RHEED intensities of the fractional

order peaks for the three phases agreed with the results reported by Farrell and

Palmstrφm [37]. By comparing the measurements with dynamical RHEED calculations

based on the previously proposed structures, they concluded with a unified model: The α

phase should be the two-As-dimer model with Ga dimers in the second layer, as

proposed by Harbison and Farrell [38] and later modified by Northrup and Froyen [40,

Figure 4.8(a)]; the β phase should be the β2 model proposed by Chadi [33, Figure

4.8(c)]; the γ phase was mainly a mixture of the β2 structure and the c(4×4) phase.

Most recently the detailed structure including atomic coordinates for the (2×4)-β

phase was determined by Garreau et al. [45] using surface x-ray diffraction and by

McCoy et al. [46] using RHEED. Theoretical values of the atomic positions were made

also available based on ab initio pseudopotential calculations by Srivastava and Jenkins

[47] and by Schmidt and Bechstedt [48, 49]. The experimental results showed excellent

agreement with the theoretical calculations for the β2 model. The As-As dimer bond

length was found to be very close to the value in the bulk trivalent arsenic (2.51 Å).
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Srivastava and Jenkins [47] reported that the bond length of the As dimers in the

outermost layer should be about 0.1 Å shorter than the one in the trench. They attributed

the difference to the presence of both threefold and fourfold coordinated Ga atoms in the

first layer.

   We now apply the electron counting model to the (2×4) reconstruction, following

the argument given by Pashley [7]. First, it is assumed that under the usual As-rich

condition the GaAs(001) surface is terminated with As dimers, and those dimerized As

atoms are the only As atoms that are threefold coordinated. This determines the 2×

period of the unit cell. The introduction of each As dimer to the unit cell requires 14

valence electrons (two for the As-As dimer bond, eight for the four As-Ga bonds, and

four for the two As dangling bonds). For a (2×M) unit cell with D As dimers (Figure

4.9), if we consider only the first two surface layers, there will be MNGa + 2DNAs valence

electrons available, where NGa = 3 and NAs = 5 are the valencies for Ga and As. Here

each Ga in the second layer contributes only half of its valence electrons to the surface.

Equating the number of electrons available (3M + 10D) to the number of electrons

needed (14D) per unit cell leads to 4D = 3M. Therefore, the smallest unit cell satisfying

the electron counting model is a (2×4) with 3 As dimers. Notice that in the above

argument the use of the electron counting model takes place when we count two

electrons for each As dangling bond and exclude all electrons from filling Ga dangling

bonds (associated with threefold-coordinated Ga atoms). The immediate result from this
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Figure 4.9  The GaAs(001) (2×M) unit cell containing D As dimers and (M – D)

dimer vacancies.

Figure 4.10  The charge distributions based on the electron counting model for the
GaAs(001) (2×4) (a) β and (b) β2 structures [8].
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simple model is that it predicts the presence of As dimer vacancies. In other words, in

order to stay semiconducting, the As-rich GaAs(001) surface has to develop a large unit

cell to allow the formation of dimer vacancies, in contrast to the Si(001) and Ge(001)

surfaces, where the same result is achieved by forming asymmetric Si and Ge dimers

(Peierls distortion) in relatively small, (2×1) unit cells.

The above discussion showed that both β and β2 structures are possible candidates

for the (2×4) reconstruction. If we include Ga-Ga dimers in constructing the surface unit

cell, it can be shown that the α model also satisfies the electron counting rule. To further

discriminate energetically between the β  and β2 models, Northrup and Froyen [8]

suggested that the electrostatic interactions between the cations and anions must be

considered. In bulk GaAs, each Ga-As tetrahedral bond has 3/4 of an electron

contributed from Ga and 5/4 of an electron contributed from As. On the (001) surface,

however, each threefold-coordinated Ga atom (whose three nearest neighbors are all As

for the β and β2 structures) carries a charge of 3 – 3 × 3/4 = +3/4, and each threefold-

coordinated (or dimerized) As atom carries a charge of 5 – 2 × 5/4 – 3 = -1/2 (the –3

accounts for the one electron in the dimer bond and the two in the dangling bond). The

total charge of the (2×4) unit cell is zero. This charge transfer is one of the ways by

which the reconstruction produces a semiconducting surface, as mentioned earlier.

Figure 4.10 shows the charge distributions for the β and β2 structures based on the

above assignment. Northrup and Froyen have shown that the Madelung energy E =

1/2∑qiqj/|Ri – Rj|, which estimates the electrostatic energy of an assembly of ions with
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locations Ri and charges qi, is 0.05 eV per (1×1) unit cell lower for the β2 structure than

that for the β structure, in good agreement with their ab initio calculation. They

eventually demonstrated that electrostatic interactions in general played an important

role in determining the lowest-energy structures for compound semiconductor surfaces.

The electronic structures of the β2 surface revealed by the ab initio calculations [47,

48] are actually far more complicated than what was described above by the simple

electron counting model. Since atoms on a GaAs or Si surface have different

coordination numbers and bonding geometry from those in their bulk, the surface dimer

bonds, dangling bonds and even the bonds within a few layers below the surface are

expected to have, to a certain extent, natures that differ from the bulk sp3 orbitals.

Depending on the bond angles around each surface atom, the hybrid orbitals on the

surface, whose formation are based on new combinations of the atomic |s>, |px>,   |py>

and  |pz> states, can be much more s- or p-like. This so-called dehybridization process

associated with semiconductor surface reconstructions was first explained by Harrison

[5, 10, 50]. The ab initio calculations by Schmidt and Bechstedt [48] showed that for the

β2 phase the As dimers in the first and the third layers were bonded by the σ

combination of the dehybridized As in-plane p orbitals as well as by the π combination

of the dehybridized As dangling (pz) orbitals (i.e., the As dangling bonds are involved in

the formation of the As dimer bonds). This electronic structure is close to what was

predicted by Kress et al. [51] for the diamond (001) (2×1) reconstruction, where the

carbon dimers tended to form C=C double bonds. Another noticeable feature for the β2
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phase is the inward displacement of the threefold-coordinated Ga atoms towards the As

dimer block [47, 48], which leads to a planar, sp2-like bonding geometry for these Ga

atoms.

In addition to the contribution of the As and Ga dangling bonds, surface states of the

GaAs(001) are also found to be associated with the surface defects. In a systematic study

using STM and scanning tunneling spectroscopy (STS) by Pashley et al. [41, 52, 53], Si

doped (n-type) GaAs layers of various thickness and doping levels were grown on

undoped buffer layers. It was found that kinks in the dimer rows [Figure 4.11(a)] on the

(2×4) surface act as acceptors. The kink density increased in proportion to the doping

level and doped-layer thickness. As a result of the electron transfer from the Si donor

states to the surface acceptor states associated with the kink sites, a space charge (or

depletion) layer formed near the surface region. Their STS spectra measured on top of

the As dimers revealed further evidence that the Fermi level was pinned at the midgap

(i.e., half way between the surface valence and conduction band edges), which implies

upward band bending at the surface [Figure 4.11(b)]. Interestingly, for p-type GaAs(001)

[53], no defects associated with surface donor states were observed. At high p-doping

level, the Fermi level was measured to be slightly above the valence band maximum,

instead of being pinned at the midgap.

To sum up for the GaAs(001) (2×4)/c(2×8) reconstruction, three sub-phases labeled

α, β and γ (in order of increasing As coverage) have been observed based on the relative

intensities of the RHEED fractional peaks. The currently accepted structural models are
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Figure 4.11  (a) The structural model of the GaAs(001) (2×4) β2 surface with kinks in
the As dimer rows. (b) The energy-level diagram near the GaAs(001) surface showing
the band bending induced by doping and surface states. Ec and Ev are the conduction
and valence band edges. Ed and EF are the donor level and the Fermi level. φ and zd are
the work function and the thickness of the depletion layer.
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as follows. The β phase is the most stable phase, which can be described by the

β2 structure [Figure 4.8(c)] proposed by Chadi. The α phase is either the relaxed two-

As-dimer model having two Ga dimers in the second layer [Figure 4.8(a)] due to

Northrup and Froyen (no direct experimental evidence reported for this structure so far),

or just a disordered β2 phase. The γ phase is a mixture of the β2 and c(4×4) phases.

4.3.2  (4×2)/c(8×2)

The (4×2) reconstruction is the Ga-rich counterpart of the (2×4) phase. However, it

has drawn much less attention than the (2×4) surface has. STM images by Resch-Esser

et al. [54] showed that, unlike the (2×4) As-rich surface, the (4×2) surface was relatively

smooth, containing no kinks over terraces of large areas.

Structural models for the (4×2) surface were proposed primarily based on STM by

analogies made with the better-known (2×4) surface, but the lack of direct understanding

of the electronic structures for the Ga-rich surface has led to controversial conclusions.

Using HREEL Frankel et al. [23] proposed a (4×2) model (later called the (4×2)β phase)

with three Ga dimers and one dimer vacancy per unit cell in the first layer [Figure

4.12(a)]. The first STM image of the (4×2) surface was reported by Biegelsen et al. [36].

The surface was characterized by bright rows parallel to the [110] direction with a period

of 16 Å in the [1 10]  direction. The width of the bright rows was consistent with two

dimers per unit cell. They thus attributed the bright feature to the Ga dimers and

proposed a model later recognized as the (4×2)β2 structure [Figure 4.12(b)], which is
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similar to the (2×4)β2 model. Ab initio calculations by Northrup and Froyen [40]

showed that the (4×2)β2 structure is energetically more stable than the (4×2)β structure,

as is the case between the (2×4)β and (2×4)β2 models.

High-resolution STM images reported by Skala et al. [55] further revealed that each

bright row consisted of two separate straight lines, and the corrugation maxima in each

line showed a ×1 period along the [110] direction. In addition, their images resolved four

faint spots per (4×2) unit cell between the bright rows which exhibited a ×2 period along

the [110] direction. They concluded that the ×1 corrugations were due to the As dangling

bonds and the bright rows corresponded to the dimer rows composed of one As dimer

per (4×2) unit cell [Figure 4.12(c)]. The faint ×2 spots were due to the Ga dimers in the

second layer. However, this model was later challenged by Xue et al. [56] based on STM

and ab initio calculations [57]. Their filled-state STM images for the (4×2)

reconstruction were essentially identical to those reported by Skala et al., but they found

the most plausible model to be the β2 structure [Figure 4.12(b)]. They attributed the faint

protrusions to the two Ga dimers per unit cell in the outermost layer and the bright

protrusions to the As dangling bonds associated with the threefold-coordinated As atoms

in the second layer. Therefore, the bright rows corresponded to the trench areas between

the Ga dimer rows. Their calculations indicated that for each Ga dimer the charge

density maximum occurred at the middle of the dimer bond. For the β2 model, this

suggested that the locations of the bright spots and the faint spots should be completely

out of phase with respect to each other along the [110] direction, which was
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Figure 4.12  The structural models proposed for the GaAs(001) (4×2) reconstruction
by (a) Frankel et al. (β) [23], (b) Biegelsen et al. (β2) [36], (c) Skala et al. [55] and (d)
Moriarty et al. [59].
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consistent with the STM images. Nevertheless, their argument also suggested that there

should be only one faint spot every ×2 period along the [110] direction, which failed to

explain the two faint spots every ×2 period revealed by their STM images.

Most recently Cerda et al. [58] evaluated the β, β2 models and the one proposed by

Skala using LEED I-V analysis. They found that the β structure yielded an agreement

with their data significantly better than the other two models. Based on STM Moriarty et

al. [59] proposed another (4×2) model [Figure 4.12(d)] with one Ga dimer in the first

layer and two more in the third layer in the trench areas.

4.3.3  c(4×4)

The GaAs(001) c(4×4) has been known as the As-saturated surface. Early PES

studies by Larsen et al. [60] presented evidence that the As coverage of the c(4×4)

surface exceeded one ML and the reconstruction was due to the chemisorbed, excess As

layer. In a study using temperature programmed desorption (TPD) and RHEED Sasaoka

et al. [61] measured the As coverage of this surface to range between 1.28 and 1.61 ML.

The STM images reported by Biegelsen et al. [36] revealed that the c(4×4) symmetry

was due to the arrangement of dimer blocks consisting of three As dimers. They

proposed a structural model [Figure 4.13(a)] corresponding to an As coverage of 1.75

ML. Theoretical calculations by Northrup and Froyen [40] confirmed that under the

most As-rich condition this c(4×4) structure is energetically more stable than the

β2(2×4) phase. The detailed bonding geometry was probed by surface x-ray diffraction
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Figure 4.13  The structural models proposed for the GaAs(001) c(4×4) reconstruction
with dimer blocks containing (a) 3 As dimers (Θas = 1.75 ML) and (b) 2 As dimers
(Θas = 1.5 ML) [36, 62 - 64].
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[62 - 64] and secondary-ion mass spectrometry (SIMS) [65]. The surface x-ray

diffraction studies showed that the c(4×4) reconstruction contained a mixture of dimer

blocks with two [Figure 4.13(b)] and three As dimers, which accounted for the variation

of the As coverage. It can be shown that the model with three As dimers satisfies the

electron counting rule. However, the model with two (or even one [63]) As dimer per

dimer block does not seem to be a stable structure due to the presence of twofold-

coordinated As atoms in the second layer. More recent STM investigation by Avery et

al. [66] concluded that the wide coverage range of the c(4×4) surface was due to a

varying number of As atoms missing from the six-atom dimer blocks, contrary to the

model based on the x-ray diffraction studies.

4.3.4  (n×6)

A number of intermediate phases exhibiting (n×6) symmetries with n = 1, 2, 3 and 6

[36, 67 - 70] have been observed during the transition between the As-rich (2×4) and

Ga-rich (4×2) reconstructions. The STM images of these surfaces were characterized by

bright rows parallel to the [1 10]  direction separated by a period of 24 Å in the [110]

direction, which accounts for the ×6 symmetry revealed by LEED. The structures of

these reconstructions are still under debate and are expected to be complicated due to the

relatively large unit cell.
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4.4  Clean surface preparation

High-quality GaAs(001) surfaces for in situ UHV studies are usually prepared by

MBE growth [71], which involves thermally desorbing native oxides at > 580 °C in an

As ambient, and the subsequent growth of an epitaxial layer of typically 0.2 to 2 µm at a

temperature between 550 to 650 °C. The growth is stopped by closing the Ga shutter and

followed by annealing the substrate (for about 5 to 10 minutes) in an As flux to allow the

surface roughness to decrease and the surface reconstruction to recover [67]. Different

reconstructions can be achieved by varying the annealing temperature and the As partial

pressure (the phase diagram of the GaAs(001) surface structures can be found in Ref.

72). The growth mode, growth rate and surface symmetry in the above process are

usually monitored by RHEED. The prepared surface is then ready for in situ

characterization. Studies of this type require the samples to be transferable under UHV

condition between the III-V MBE growth facility and the chamber equipped with surface

analysis instruments.

For the situation where in situ measurements are unavailable, it has been

demonstrated [73] that an amorphous As layer can be used to protect the GaAs surface

from contamination during sample transfer through air. The growth of the As cap can

take place after the formation of the (2×4) reconstruction is confirmed by RHEED at the

end of the epilayer growth process. Due to the low sticking coefficient of As to itself, the

GaAs substrate has to be held at more than 30 °C below room temperature to allow the

As to condense [69, 73, 74]. To achieve a cap thickness of 1000 Å, which is necessary

for preventing any contamination reaching the As-GaAs interface during ambient
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storage of a few weeks to a few months, it usually takes several hours for the As cap to

grow even with a LN2-cooled sample manipulator [75]. Resch-Esser et al. [76] also

reported that the use of As2, instead of As4, to grow the protective layer is crucial for

preparing high-quality GaAs(001) surfaces, especially for the c(4×4) reconstruction.

Once the As-capped GaAs(001) substrate is under UHV again, the clean,

reconstructed surface can be recovered by thermally desorbing the amorphous As layer.

Prior to the removal of the As layer, the sample should be degassed at 250 °C (this

removes the As2O3 layer at the surface [77]) to minimize the GaAs surface

contamination that may happen during the decapping process. The As desorption occurs

at 300 – 350 °C. Further annealing at 350 °C results in a c(4×4) LEED pattern,

indicating an As-saturated surface. The (2×4) reconstruction can be obtained over a wide

temperature range between 380 and 450 °C. Annealing at even higher temper leads to

the (n×6) resonstructions and finally to the (4×2) Ga-rich surface. Several studies [54,

59, 76, 78] using STM and LEED have already shown that the quality of the decapped

GaAs(001) (2×4) surface can be as good as those measured in situ.. One drawback of

this technique is that the structural transitions described above at various temperatures

are essentially irreversible, and thus the substrates generally can not be used repeatedly,

without the use of an As source.



Chapter 5 High-Resolution Structural Analysis of Sb-Terminated

GaAs(001)-(2x4) Surface

5.1  Introduction

The precise locations of Sb atoms for the GaAs(001):Sb-(2× 4) surface were measured

by the x-ray standing wave (XSW) technique. The XSW results are consistent with

symmetric Sb dimers, whose formation has recently been predicted by six competing

models. The (004) and (022) XSW analysis determined the Sb dimer height and bond

length to be 1.72 Å and 2.84 Å, respectively. The Sb coverage of the (2× 4) reconstruction

was measured by Rutherford backscattering to be 0.48 monolayers (ML). This coverage

agrees with the three proposed structural models that have two Sb dimers per (2x4) unit

cell and disagrees with the models that propose one or three Sb dimers. Finally, a (111)

XSW measurement, which tested for lateral displacement of the Sb dimers in the [110]

direction, was used to discriminate among the remaining three models.

5.2  Background information

The atomic arrangement at compound semiconductor surfaces and interfaces is closely

related to the initial growth of the corresponding strained layer heterostructures. Such

structures have potentially broad applications in telecommunication and high-speed

electronic components. Scientifically, there has been a growing interest in the (001) III-V

surfaces, arising from the abundant, strongly coverage-dependent surface structures. For

GaAs(001), for instance, extensive investigations have been carried out, and the surface has

been reported to exhibit various phases ranging from the most As-rich c(4× 4) to the most

Ga-rich (4× 6) reconstruction, as reviewed in Chapter 4.

100
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Recently, similar structures were observed by Madea et al. [1] on a Sb-terminated

GaAs(001) surface. Their reflection high-energy electron diffraction (RHEED) study

revealed a number of different phases, including a (2× 4) pattern for annealing

temperatures between 440° and 560° C. Their core-level photoelectron spectroscopy

measurements suggested that this (2× 4) reconstruction was formed by the surface Sb

bonding to the underlying Ga after the desorption of As at the Sb/GaAs interface. Later,

Esser et al. [2] performed a reflectance anisotropy spectroscopy (RAS) study combined

with total-energy and tight-binding calculations. Their calculations rendered a Sb dimer

bond length of 2.86 - 2.87 Å, and the RAS result was used in discriminating among several

possible (2× 4) models. Meanwhile, Moriarty et al. [3] reported a scanning tunneling

microscopy (STM) investigation on a number of Sb-induced reconstructions on

GaAs(001). Their study showed considerable differences in the structure and ordering of

the Sb- and As-terminated GaAs(001) - (2× 4) surfaces.

The bonding geometry of the Sb/GaAs(001) (2× 4) surface was first addressed

quantitatively by Sugiyama et al. [4] using back reflection x-ray standing waves

(BRXSW). By monitoring the Sb 3d photoelectron yields through the GaAs (111) and

(11
−

1) Bragg reflections, they reported a Sb dimer height of 1.81 Å and a dimer bond length

of 2.95 Å. These values are notably larger than other related measurements [5 - 7] and

theoretical calculations [2] of Sb dimers on semiconductor surfaces.

Recently the detailed structural and electronic properties of this surface were evaluated

theoretically by G.P Srivastava and S.J. Jenkins [8] and by Schmidt and Bechstedt [9, 10]

using first-principles pseudopotential calculations. They reported a Sb-Sb dimer bond

length of 2.79 Å and 2.86 Å, respectively.

 Herein, we report a conventional x-ray standing wave study of the GaAs(001):Sb-

(2× 4) surface. By measuring the Sb L fluorescence yields for the bulk GaAs (004) and
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(022) reflections at a conventional Bragg geometry, we have a more direct measure of the

dimer height and dimer bond length than that given by the {111} BRXSW measurements.

Our values are consequently a more accurate test for the theoretical calculations. In

addition, we used a (111) XSW measurement (in combination with the (004) and (022) ) to

look for a lateral surface relaxation that was predicted in one of the surface models

proposed by Esser et al. [2] and favored by their RAS results. We also determined the Sb

coverage of the (2× 4) surface using Rutherford backscattering spectrometry (RBS) and

compared these results with the previously proposed (2× 4) models, which vary in Sb

coverage from 0.25 to 0.75 ML. The final synthesis of our measurements and analysis will

be shown to be consistent with one and only one of the six competing models for this

surface structure.

5.3  Surface preparation

The GaAs(001) substrate was prepared prior to the XSW measurement with a 1-µm-

thick homoepitaxial layer. The surface was then protected by an amorphous As layer for

sample transfer in air. The XSW experiments were conducted at beamline X15A of the

National Synchrotron Light Source at Brookhaven National Laboratory. After introduction

into the MBE system, the GaAs substrate was first degassed at 250°C for about 45

minutes. The As protective layer was then removed by thermal desorption at 350°C, and a

c(4× 4) LEED pattern was observed [Figure 5.1(a)]. The As-rich (2× 4)/c(2× 8)

reconstructed surface was attained by annealing the sample further at 400 - 450°C [Figure

5.2(a)]. Sb was deposited from a Knudsen cell held at 420°C. The deposition rate was

calibrated to be ~ 0.7 ML/min by measuring the Sb MNN Auger peak intensities from a

Sb-terminated Si(001) surface which is known to have a saturated coverage at 0.8 ML [11].

To prepare the Sb-terminated GaAs(001) surface, ~ 4 ML of Sb was deposited
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(a) c(4x4) 43 eV c(4x4) 90eV

     

(b) (1x6) 43 eV (c) (3x6)/(6x6) 47 eV

     

Figure 5.1  Some of the LEED patterns commonly observed on the clean GaAs(001)
surface prepared by thermal annealing of an As capped substrate: (a) c(4x4), (b) (1x6)
and (c) (3x6)/(6x6).
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(a) (2x4) clean GaAs(001)
     43 eV 87 eV

     

(b) (2x4) Sb stabilized GaAs(001)
42 eV

Figure 5.2  Comparison between the (a) As- and (b) Sb-stabilized (2× 4) LEED
patterns. The Sb-stabilized (2× 4) surface was annealed at 505 °C.
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Figure 5.3  Auger spectra of the GaAs(001) surface (a) before and (b) after the As
protective layer was thermally desorbed and (c) after the adsorption of about 0.8 ML of
Sb.
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with the substrate held at room temperature (RT), followed by a 20-minute anneal at 505°C.

The LEED pattern showed a clear (2× 4)/c(2× 8) reconstruction with streaky half-order

spots along the [110] direction [Figure 5.2(b)]. The four-fold spots were much sharper

than those from the As-rich clean surface, indicating a more highly ordered surface had

developed upon the adsorption of Sb. This observation is consistent with the significantly

lower density of kink sites on the Sb-terminated surface reported by STM [3]. Figure 5.1

shows some of the LEED patterns commonly observed on the clean GaAs(001) surface

prepared from an As capped substrate. Figure 5.2 is a comparison between the As- and Sb-

stabilized (2× 4) LEED patterns. In Figure 5.3 we showed the Auger spectra recorded

during the clean surface preparation and after the Sb adsorption.

5.4  XSW results and discussions

X-ray standing wave measurements were then used to triangulate the Sb atomic

positions relative to the GaAs lattice. With an incident photon energy Eγ above the Sb LIII

edge, the induced modulation of the Sb L fluorescence yield is monitored by a solid-state

Si(Li) detector. To locate the Sb positions, we employed the GaAs (004) reflection at Eγ =

7.60 keV to directly measure the Sb dimer height (h’), and the (022) reflection at Eγ = 7.00

keV to deduce the dimer bond length L.

5.4.1  Sb-Sb dimer bond length and dimer height

Figure. 5.4(a) and (b) show the results of the (004) and (022) measurements. Based on

χ2 fits of Eq. (2.72) to the data, we determined the coherent fractions and the coherent

positions to be f004 = 0.68 ± 0.02, P004 = 1.22 ± 0.01, f022 = 0.45 ± 0.01 and P022 = 1.10 ±

0.01.
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Figure 5.4  The GaAs(001):Sb-(2× 4) experimental XSW data (filled circles) and the
best fits (solid lines) for the normalized Sb L fluorescence yields and the reflectivities R
versus the incident angle θ for the GaAs (a) (004) and (b) the (022) Bragg reflections.
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If a symmetric Sb dimer model is assumed, the measured (004) coherent position can

be directly related to the dimer height [Figure 5.5(a)] by

h’ = P004 d004 , (5.1)

which locates the Sb dimer at h’ = 1.72 ± 0.02 Å above the last bulk-extrapolated GaAs

(004) atomic plane. When compared with the height of Sb dimers formed on a Si(001)

surface, which has been measured previously by XSW [5] (h’ = 1.64 Å) and by ion

channeling [12] (h’ = 1.63 Å), our result shows that h’ is about 0.09 Å higher for Sb on

GaAs(001). This is consistent with the fact that Ga has a 0.09 Å larger covalent radius (rGa

= 1.26 Å, rSi = 1.17 Å). In comparison, the determined Sb dimer height on GaAs(001)

reported by Sugiyama et al. using BRXSW [4] (h’ = 1.81 ± 0.02 A) is 5% larger than our

measured value.

Notice that the measured coherent positions satisfy the following relationship:

P022 = (1 + P004)/2  . (5.2)

This meets the requirement for adatoms occupying two-fold symmetry related positions

around the bridge site on a GaAs(001) surface [Figure 5.5(b)]. In addition, the fact that the

measured coherent fraction f022 is significantly lower than f004 is also consistent with the Sb

symmetric dimer model, since the positions of the dimerized Sb atoms in such a model are

equivalent along the [004] direction [Figure 5.5(a)] but inequivalent along the [022]

[Figure 5.5(b)]. To extract the Sb-Sb bond length L from the two measurements,
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Figure 5.5 The (a) [110] and (b) [100] projections of an Sb-terminated GaAs(001)
surface. The solid lines are the atomic planes for the different Bragg reflections. L is the
Sb-Sb bond length. h’ is the height of the Sb dimer relative to the unrelaxed GaAs(001)
surface Ga planes.
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the coherent fraction is decomposed into a product of three factors based on the

convolution theorem [13]

fH = C aH DH   , (5.3)

where C is the fraction of adatoms at ordered positions, DH is the adatom Debye-Waller

factor, and aH is the geometrical factor, accounting for the reduction of the coherent fraction

due to multiple adatom positions along the H direction. As illustrated in Figure 5.5, it can

be shown that a004 = 1 and a022 = |cos(πL/2d022)|. By combining the (004) and (022)

results, the dimer bond length L can be determined as

L = 2d022
π

cos−1(− f022D004

f004D022
)   . (5.4)

At this point, we will make the simplifying approximation that the Sb adatoms have the

same RT Debye-Waller B factor as reported for bulk GaAs (B = 0.59 Å2) [14], and thus

DH = exp(-B/2dH
2) will be estimated as D004 = 0.86 and D022 = 0.93. The two

measurements therefore determine the Sb-Sb bond length through Eq. (5.4) to be L = 2.84

± 0.05 Å, which is in excellent agreement with the first-principles total energy calculations

by Esser et al. [2] and by Schmidt and Bechstedt [9] (L = 2.86 - 2.87 Å). Our measured

LSb-Sb is also very close to the bond lengths of the Sb dimers formed on a GaAs(110)

surface [7] (L = 2.80 Å) and on a Ge(001) surface [6] (L = 2.90 Å) reported by x-ray

diffraction (XRD). While it is about 0.1 Å longer than the Sb-Sb bond length of a Sb-

terminated Si(001) surface measured by XSW [5] (L = 2.75 Å). The BRXSW study by



111

Sugiyama et al. [4], however, reported a Sb-dimer bond length of 2.95 ± 0.06 Å on the

GaAs(001) surface; note that this value is 4% larger than the present measurement,

consistent with their report of a 5% larger value of h’.

Table 5.1 Theoretical and experimental values of the structural dimensions for the Sb

dimers on different surfaces. L is the Sb dimer bond length. h’ is the height of the Sb

dimer relative to the surface GaAs (004) planes [see Figure 5.5(a)].

Substrate Si(001) Ge(001) GaAs(110) GaAs(001) GaAs(001) GaAs(001)

XSWd XRDe XRDf BRXSWg Theoryh Present
XSW

h’ (Å) 1.64±0.02 1.81±0.02 1.72±0.02

L (Å) 2.75±0.06 2.90 2.80 2.95±0.06 2.86 - 2.87 2.84±0.05

d Ref. 5
e Ref. 6
f Ref. 7
g Ref. 4
h Ref. 2 and 9

Since the thermal vibrational amplitude is normally larger for surface atoms, our

extrapolated value of L = 2.84 Å represents an upper bound on the true Sb dimer bond
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length. Based on previous XSW measurements for As [15], Sb [5], and Bi [16] dimers on

Si(001), we can reasonably approximate that the Sb thermal vibrational amplitude on

GaAs(001) should be 0.15 Å. This value, which is 23% larger than that for bulk GaAs at

RT, leads to a reduction in LSb-Sb from 2.84 to 2.81 Å. This small reduction in LSb-Sb is

included within the quoted ±0.05 Å error. We summarize our results in conjunction with

other related measurements in Table 5.1.

5.4.2  Sb coverage

In addition to measuring the local bonding geometry of the Sb dimer, we also

determined the Sb coverage Θ of the (2× 4) surface using RBS. Major differences in Sb

coverage can be found among the previously proposed (2× 4) models: Maeda et al. [1]

proposed a model (β3) consisting of three Sb dimers per (2× 4) unit cell, the theoretical

calculations and RAS result by Esser et al. [2] were in favor of a (2× 4) model (α2) with

two Sb dimers (and two Ga dimers) per unit cell, and the STM study by Moriarty et al. [3]

suggested only one Sb dimer per unit cell (δ1). Besides, Schmidt and Bechstedt [9]

considered in their calculations three additional unit cells (δ2, β22 and β23) containing both

two and three Sb dimers. These six different (2× 4) models correspond to Sb coverages of

0.75, 0.50 and 0.25 ML. Our RBS result showed that the same sample we studied with

XSW was covered by 3.0 ×  1014 Sb/cm2, which is equivalent to 0.48 ML on a GaAs(001)

surface (1 ML = 6.26 ×  1014 atoms/cm2). By considering the ordered
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Figure 5.6  Proposed structural models for the Sb-stabilized GaAs(001) (2× 4) surface
with one and three Sb dimers per unit cell. (a) the δ1 model (ΘSb = 0.25 ML, Ref. 3 and
9), (b) the β3 model (ΘSb = 0.75 ML, Ref. 1 and 9) and (c) the β23 model (ΘSb = 0.75
ML, Ref. 2 and 9).
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fraction C measured from the (004) reflection of C = f004/D004 = 0.79, we can obtain an

ordered coverage of CΘ = 0.38 ML. This value indicates that under the present growth

condition the (2× 4) ordered structure was formed by about 0.4 ML of Sb adatoms. This

result is consistent with a surface composed predominantly of two Sb dimers per unit cell

as proposed by Esser et al. [2] (α2) and by Schmidt and Bechstedt [9] (β22 and δ2). The

ordered coverage of 0.4 ML rules out the possibility that the model proposed by Moriarty

et al. [3] with one Sb dimer per unit cell (δ1) is the only ordered structure on the (2× 4)

surface (CΘ ≤  0.25 ML for this case). Figure 5.6 depicts the three proposed models

having one and three Sb dimers (δ1, β23 and β3).

5.4.3  α2 and β22 models

In Esser’s total-energy calculation [2] there are two different models considered which

have two Sb dimers per (2× 4) unit cell. They were also included later in the calculation by

Schmidt and Bechstedt [9]. As illustrated in Figure 5.7, the α2 model has two Ga dimers in

the second layer, and the β22 model has one As dimer in the third layer. The former was

based on the clean GaAs(001)-(2× 4) α phase proposed by Farrell and Palmstrom [17],

and the latter was based on the GaAs(001)-(2× 4) model proposed by Chadi [18] (known

as the β2 phase). Energetically, these calculations show that the α2 and β22 models are

both stable (2× 4) structures. The theoretical calculation by Northrup and Froyen [19]

showe that for the clean (2× 4) α  phase, the As and Ga atoms in the top
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Figure 5.7  The top and the [110 ] side views of two different GaAs(001):Sb-(2× 4)
models (Ref. 2 and 9). Both models have two Sb dimers per unit cell (ΘSb = 0.5 ML).
The β22 model has two Ga dimers in the second layer and the α2 model has one As
dimer in the third layer. Δx in the α2 model is the lateral shift of the Sb dimers along the
[110] direction relative to a bulk two-fold axis, in response to the strain induced by the
formation of the Ga dimers.
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two layers will undergo large lateral displacements (0.4 - 1.2 Å) in the [110] direction to

allow the formation of the second-layer Ga-Ga dimers. A similar relaxation effect would be

expected to occur on the Sb-terminated surface to accommodate the lateral strain if Sb and

Ga dimers coexist in the top two layers, as illustrated in the α2 model. Since the proposed

displacement is perpendicular to the Sb-Sb dimer bonds, the standing wave generated by

the (111) reflection would be most sensitive to this effect. Based on symmetry, the surface

should be equally occupied by domains with Sb dimers shifted in the [110] and [110 ]

directions. Thus the distribution of Sb atoms from both domains, as projected into one unit

cell, should remain centered along a bulk two-fold axis. Therefore

P111 = (P004 + 2)/4  , (5.5)

which predicts P111 = 0.81 from our measured value for P004. The proposed lateral

relaxation of the surface in the α2 model would broaden the Sb distribution along the [110]

direction and lead to a lower (111) coherent fraction. We can calculate this reduction of f111

through Eq. (5.3) with the following formula for a111:

a111 = cos 4πΔx
6d111

 

 
  

 
   . (5.6)

Here we assume that all Sb dimers are shifted by the same amount, Δx (Figure 5.7), along

the [110] in either direction. For the purpose of testing the two different models, we
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Figure 5.8  The (111) XSW data (filled circles) and the best fits (solid lines) for the
normalized Sb L fluorescence yield and the GaAs(111) reflectivity R. The dashed line is
the calculated Sb fluorescence yields for Δx = 0.4 Å in Figure 5.7, while the best-fit solid
line corresponds to Δx = 0 .
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estimated the displacement Δx in the α2 model based on Schmidt and Bechstedt's

calculation to be 0.4 Å, which is also the lower bound of the lateral shifts calculated for the

GaAs(001) (2× 4) α phase reported in Ref. 19. This would reduce the (111) geometric

factor to a111 = 0.81 and the coherent fraction to f111 = CD111a111 = 0.62 (with D111 = 0.97).

For the β22 Model, the Sb dimers are close to the ideal positions (Δx ≈ 0 ), therefore a111 =

1 and Eq. (5.3) renders f111 = 0.77.

Figure 5.8 shows the result of the (111) XSW measurement carried out at Eγ = 7.00

keV. The Sb coherent position (0.81 ± 0.01) agrees with the symmetry requirement of Eq.

(5.5), while the measured coherent fraction (0.74 ± 0.02) implies a111 ≈ 1  (or Δx ≈ 0 ), in

favor of the structural model without Ga dimers in the second layer (the β22 model). The

disagreement of our measurement with the α2 model is evident in Figure 5.8 from the

difference between the best fit curve (solid line) and the calculated curve for Δx = 0.4 Å

(dashed line).

5.4.4  δ2 model

In this section we compare our XSW measurements with the δ2 model proposed in

Schmidt and Bechstedt's calculation. Figure 5.9 shows the structure of this model. It is

constructed with one Sb dimer in the first layer, one Sb dimer in the third layer and two Ga

dimers in the second layer, corresponding to a Sb coverage of 0.5 ML. Based on their

calculated phase diagram, Schmidt and Bechstedt concluded that this model (together with
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Figure 5.9  The top and the [110 ] side views of the δ2 model for the GaAs(001):Sb-
(2× 4) surface proposed by Schmidt and Bechstedt [9]. It is constructed with one Sb
dimer in the first layer, one Sb dimer in the third layer and two Ga dimers in the second
layer (ΘSb = 0.5 ML). Δx is the lateral shift of the outermost Sb dimer along the [110]
direction relative to the bulk two-fold axis. Schmidt and Bechstedt's calculation
suggested a Δx of about 0.6 Å.
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the δ1 model) represented the structures actually observed in the experiments. However, the

calculation suggested a lateral displacement Δx of approximately 0.6 Å for the outermost

Sb dimer toward the second layer Ga atoms from the two-fold symmetry position, while

almost no displacement for the Sb dimer in the third layer.

We now simulate the (022) and (111) coherent fractions for the δ2 model based on the

dimer geometry reported in Schmidt and Bechstedt's calculation. We first define the

quantity ΔP004 = |P004,1 - P004,3|, where P004,1 and P004,3 are the (004) coherent positions for

the Sb dimers in the first and third layers, respectively. It can be shown that the (004)

geometric factor for this model is a004 = cos(πΔP004). Since the order fraction C ≤ 1 in Eq.

(5.3), from the XSW (004) measurement a004 must be greater than f004/D004 = 0.79 and

thus ΔP004 ≤ 0.21. Based on the structure in Figure 5.9, we can express a022 and a111 for the

Sb atoms as

a022 = 0.5cos πL
2d022

 

 
  

 
 cos πΔP004( ) + cos πΔx

d022
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+ sin2 πΔP004( )
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(5.7)

and a111 = 0.5 1 + cos π
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, (5.8)

where L = 2.87 Å is the theoretical Sb dimer bond length (for both dimers). We plotted

a022 and a111 in Figure 5.10 as functions of ΔP004 with Δx = 0.6 Å. It can be seen that
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Figure 5.10  Calculated (022) (solid curve) and (111) (dashed curve) coherent fractions
based on Eq. (5.7) and (5.8), respectively, for the δ2 model. The straight solid and
dashed lines indicate the XSW measured values. ΔP004 is the difference between the
(004) coherent positions for the Sb dimers in the first and the third layers (Figure 5.9).
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(5.7) and (5.8) will reproduce the experimental values (a022 = 0.45 and a111 = 0.74) only

when ΔP004 is as large as 0.21. Since the δ2 model agrees with our XSW measurements

only for the extreme case (ΔP004 = 0.21), and more importantly it corresponds to a height

difference of ΔP004d004 = 0.3 Å between the Sb dimers in the first and third layers, we

conclude that our observed structure can not be described by the δ2 model.

5.5  Summary

The GaAs(001):Sb-(2× 4) surface prepared by MBE was studied by (004), (022) and

(111) x-ray standing waves. All three XSW measurements are consistent with the

formation of symmetric Sb dimers above the modified bridge site. The Sb dimer height

was determined to be h’ = 1.72 ± 0.02 Å above the bulk-like (004) Ga atomic plane. The

Sb dimer bond length was measured to be L =  2.84 ± 0.05 Å. Both values are in good

agreement with previous theoretical calculations and other related measurements. The Sb

coverage of the (2× 4) reconstruction was determined by Rutherford backscattering to be

0.48 ML, consistent with surface models having two Sb dimers per (2× 4) unit cell, and

disagreeing with models (δ1, β23 and β3) having one and three Sb dimers per unit cell.

Finally, the (111) measurement showed no lateral shift of the Sb dimers in the [110]

direction. Our analysis strongly favors the (2× 4) model with one As dimer in the third

layer (the β22 model) over the α2 and δ2 models.



Chapter 6 Indium-Induced GaAs(001) (4×2)/c(8×2) Surface

6.1 Introduction

Owing to the large lattice mismatch, GaAs/InAs has served as an ideal system for

studies of the thermodynamics behind the epitaxial growth of highly strained

heterostructures. It is known that two-dimensional (2D) growth of InAs on GaAs(001)

can only occur during the nucleation of the first two monolayers. Recent investigations

have shown that the planar growth is immediately followed by the formation of self-

organized, coherent three-dimensional (3D) InAs islands, which has provided a

practicable way for fabricating 0-dimensional quantum devices. For applications where

2D growth is more desirable, it was found that the 3D-island formation of InAs on the

GaAs(001) can be delayed significantly under an In-rich growth condition. Despite this

interesting behavior and potential applications, little has been known about the atomic

structures at the initial growth stage of In or InAs on the GaAs(001). Previous STM

observations showed that the In-induced GaAs(001) (4×2)/c(8×2) surface appeared to be

well ordered. We therefore carried out XSW studies in conjunction with LEED and

Auger analysis. In this chapter I present the experimental results and discuss possible

structural models for this surface.

6.2 In adsorption on GaAs(001): Background information

Since it is expected that In forms InAs-like structure on the GaAs(001) surface, in

123
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this section we first review what is known about the InAs(001) clean surface and the

initial growth of InAs on the GaAs(001), followed by a discussion of the GaAs(001):In

(4×2)/c(8×2) structures.

6.2.1 InAs(001) clean surface

The clean InAs(001) surface exhibits a variety of symmetries similar to GaAs(001).

Experimental studies have observed the As-rich c(4×4) [1], (2×4) [2 – 8] and In-rich

(4×2) [2, 4, 5, 7, 9] reconstructions. These surfaces were prepared either by growing an

epitaxial layer using conventional MBE [2, 5] or by performing sputtering-annealing

cycles [8, 9] on InAs(001) substrates. The reconstructions have been also observed on

the clean surfaces prepared from As-protected InAs substrates [4, 6].

The As-rich (2×4) reconstruction has been studied by STM [3 - 7] and surface x-ray

diffraction [8]. Yamaguchi and Horikoshi [4 - 6] showed that by annealing an As-capped

InAs(001) substrate at 300 °C the (2×4) surface symmetry can be recovered. Their STM

images revealed a highly uniform dimer-vacancy row structure, which was determined

to be consistent with the β2 model by Chadi [71], having two As dimers in the topmost

layer [Figure 4.8(c) and 6.1(a)]. Annealing the (2×4) surface further at 340 °C caused the

surface As to desorb and the subsequent STM images showed that the As dimer rows

contained mainly a single As dimer. A new model [named (2×4) α2, Figure 6.1(b)],

which has not been considered for the GaAs(001) (2×4) surface, was therefore proposed.

The detailed bonding geometry of the InAs(001) (2×4) β2 structure was recently
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Figure 6.1  Structural models proposed for the InAs(001) As-rich (2×4) surface by
Yamaguchi and Horikoshi [4] (a)(b) and for the InAs(001) In-rich (4×2) surface by
Ohkouchi and Ikoma [7] and by Kendrick et al. [9] (c).
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confirmed and determined using surface x-ray diffraction by Gothelid et al. [8].

The In-rich (4×2) reconstruction of the InAs(001) surface has been investigated by

Ohkouchi and Ikoma [7] and by Kendrick et al. [9] using STM. Ohkouchi and Ikoma’s

filled-state images showed that the (4×2) surface was characterized by straight lines of

about 4 Å wide parallel to the [110] direction separated by a spacing of approximately

17 Å. They attributed the straight lines to In dimer rows with a single dimer width. The

empty-state STM images measured by Kendrick et al. further resolved the individual In

dimer in the straight line and also revealed weak features in the trench areas. Both

studies reached the same conclusion that the trench areas were terminated with two In

dimers per (4×2) unit cell in the third layer [Figure 6.1(c)]. This (4×2)/c(8×2) model is

essentially the same as the one proposed by Moriarty et al. [72] for the Ga-rich

GaAs(001) (4×2) surface. It is interesting to point out that the high-resolution filled-state

images of the InAs(001) (4×2) surface reported by Kendrick et al. [9] do not resemble

exactly the images of the GaAs(001) (4×2) surface reported in Ref. 74 - 76.

Despite the similarities in surface symmetries, the InAs(001) and GaAs(001)

surfaces were found to have different properties in several aspects. First, a number of

studies [10 - 12] have shown that InAs tended to pin its Fermi level near the conduction

band minimum at surfaces and interfaces. This implies a downward band bending and an

electron accumulation (inversion) layer forming in the near-surface region for n-type (p-

type) InAs (Figure 6.2). This charge accumulation at clean InAs surfaces has been

measured by HREEL [10] and ARPES [11]. The former showed evidence that the
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Figure 6.2  The energy-level diagram near the (001) surfaces of (a) n-type and (b) p-
type InAs. It is found that the InAs(001) surface tended to pin its Fermi level near the
conduction band minimum. Ec and Ev are the conduction and valence band edges. Ed,
Ea and EF are the donor level, acceptor level and the Fermi level, respectively. φ is the
work function.
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accumulation layer was induced by intrinsic donor-like surface states. However, in the

recent STM studies by Yamaguchi and Horikoshi [4 - 6] no surface defect was found

linked to the Fermi level pinning behavior of InAs, in contrast to the case of GaAs (see

Section 3.3.1). Tersoff [13] pointed out based on elementary band structure

considerations that this unusual behavior of InAs was due to the fact that its direct band

gap (0.36 eV) was much narrower than its indirect band gap (1.21 eV). Because of the

Fermi level pinning near the conduction band edge, almost all the metals make ohmic

contacts with n-type InAs, while Schottky barriers can only form on p-type InAs [14].

Another difference between the InAs(001) and GaAs(001) surfaces lies in the

structural transitions between the As-rich (2×4) and the Group-III-rich (4×2)

reconstructions. By monitoring the RHEED specular reflectivity while annealing and

cooling an InAs(001) surface under an As flux, Moison et al. [15] and later Yamaguchi

and Horikoshi [2, 5, 16] observed that the surface structure evolved reversibly but

abruptly between the (2×4) and the (4×2) phases through a hysteresis loop with a width

of roughly 10 K, which has the character of a first-order phase transition. Similar

measurements on the GaAs(001) surface [2, 5], on the other hand, showed that the

(2×4)-(4×2) transition occurred reversibly and smoothly along a single path over several

intermediate phases (see Section 4.3.4), indicating a higher order phase transition.

Further investigations by STM [3 - 6] and Monte Carlo simulations [5, 16] found that

these different transitions can be related to the strength of the lateral interactions

between surface species and the As desorption behaviors at step edges.
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6.2.2 Initial growth of InAs on GaAs(001)

InAs is a direct, narrow band gap semiconductor (Eg = 0.36 eV at RT [14]) with an

electron mobility (33000 cm2/Vs [73]) more than 20 times higher than Si. When

synthesized in conjunction with lattice-matched Sb-based compound semicondutors,

InAs shows promising applications in fabricating high-speed transistors and electro-

optical device in the infrared range [14].

Due to the 7% lattice mismatch with GaAs, InAs is often used in the form of ternary

alloys (e.g., InGaAs and InAlAs) when grown on GaAs substrates. It has been shown

that the growth of pure InAs on GaAs(001) can be described by the so-called Stranski-

Krastanow [17] (SK) process, which involves a initial layer-by-layer growth followed by

island formation. The critical thickness tc, which is defined as the overlayer thickness

beyond which the surface morphology favors energetically the formation of 3D islands

over the 2D growth, was measured to be about 1.5 ML for InAs on GaAs(001) [18 - 20].

 The reconstructions of the GaAs(001) surface upon InAs deposition was identified

with coverages up to the critical thickness by Belk et al. [21, 22] using RHEED and

STM and by Scholz et al. [23] using reflection anisotropy spectroscopy (RAS) and

RHEED. Under As-stabilized growth conditions they observed that the surface exhibited

a variety of symmetries including the c(4×4), (1×3), (2×3) and (2×4), depending on the

substrate temperature and the InAs coverage. The surface morphology within the 2D-

growth regime was investigated by Bressler-Hill et al. [24, 25]. Their STM images

showed that the InAs tended to form 2D islands elongated in the [1 10]  direction. The

island size distribution in this direction was found to exhibit a scaling behavior [25]. In
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the [110] direction, however, a preferred island size of approximately 40 Å was

observed, independent of the InAs coverage. This anisotropic island shape was attributed

to the different step edge reactivities and diffusion barriers along the [1 10]  and [110]

directions, which are closely related to the reconstruction of the GaAs(001) surface.

They also suggested that the preferred island size could be due to strain effects.

Beyond the critical thickness, Snyder et al. [26] have suggested, based on their STM

and RHEED observations, that the strain energy in the heterolayer was relieved initially

by forming coherent 3D islands prior to the nucleation of misfit dislocations. Ratsch and

Zangwill [27] confirmed theoretically that coherent islands can be stable during a SK

heteroepitaxial growth. In addition to the 2D-3D transition, Joyce et al. [28] showed

evidence for the (In,Ga)As alloying during the growth of the InAs/GaAs heterostructure,

which can not be fully described by the classic SK mode. Technologically, the formation

of these self-organized, coherent 3D islands during the initial growth of highly strained

systems opened up an opportunity for the realization of devices utilizing the 3D

quantum-confinement effect. The studies of these so-called InAs quantum dots have

become of great interest in the past five years. The electronic and optical properties of

self-organized 2D and 3D InAs islands embedded in a GaAs matrix have been evaluated

experimentally [29 - 33] and theoretically [34, 35], in search of the dependence on the

island size distributions and facet orientations. Recently InAs-quantum-dot-based laser

diodes [36 - 38], field effect transistors [39, 40] and infrared detectors [41] have been

also demonstrated.
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6.2.3 Surfactant-mediated growth of InAs on GaAs(001)

For the deposition of highly strained InGaAs on GaAs, the SK growth mode, as

discussed above, was commonly observed under As-rich conditions. Since

thermodynamically the modern thin-film growth processes normally occur far away

from equilibrium, the growth mode and thus the ultimate surface morphology of the

heterolayer depend strongly on the kinetic restrictions. It is generally understood that

reducing the surface diffusion lengths of the adatoms can suppress the island formation,

defer the 2D-3D transition and thus increase the critical thickness of the film [42 - 44].

These lead to the morphological change at interfaces that are desirable for improving the

performance of a semiconductor layer structure.

In addition to employing low growth temperatures and high deposition rates, it has

been found that such a kinetic limit can be imposed on the adatoms by introducing a

surface-active foreign species (or surfactant) [45]. It was initially proposed that the role

of surfactants was to modify the energetics in favor of 2D growth [45], owing to the fact

that surfactants in general tend to passivate the surface and segregate at the growth front.

Later studies [42, 43, 46] showed that, more importantly, surfactants altered the surface

diffusion lengths of the growing materials, which determined the effect of a surfactant

on the growth mode. It has been demonstrated that Bi, for example, can effectively

change the growth mode and therefore be a surfactant for growing Si/Ge heterostructure

[47], which has a lattice mismatch of 4% and a tc of 3 - 4 ML [48].

It was reported by Schaffer et al. [49] using RHEED that by growing InAs under an

In-stabilized condition onto an In-terminated GaAs(001) (4×2) surface the InAs layer
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appeared to be coherently strained up to a thickness of 8 Å (> tc). The unstrained bulk

InAs in-plane lattice constant was measured only after the film thickness was over 2000

Å. Similar observations were reported by Munekata et al. [50]. Tournie and Ploog [51]

later showed, in attempts to grow epitaxially strained InAs on Al0.48In0.52As and GaAs,

that by maintaining the (4×2) reconstruction at the growth front of the InAs layer, the

growth of 3D islands was completely inhibited and the formation of misfit dislocations

was delayed. They attributed the change of the growth mode to the kinetic limitations

imposed on the As adatoms by the reactive In-terminated surface. They therefore

considered the In atoms as a virtual surfactant (VS). The word “virtual” came from the

fact that the growth modification here was driven mainly by the surface stoichiometry of

the heterolayer itself, instead of the presence of a foreign species as in the cases of usual

surfactant-mediated growths.

Further high-resolution transmission electron microscopy (HRTEM) analysis [44,

52] showed that different types of misfit dislocations had developed in the strained

layers prepared by standard and VS-mediated MBE with thicknesses well beyond tc. For

VS-grown films, misfit dislocations were only detected at the InAs/GaAs interface and

the InAs layers were essentially defect free. Photoluminescence measurements [53, 54]

revealed superior optical properties of the VS-grown samples, which confirmed the high

qualities of the InAs layers.
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6.2.4 In-terminated GaAs(001)  (4×2)/c(8×2)

Despite the intense scientific and technological interests in growing InAs/GaAs

(either 2D layer or 3D island) heterostructure, very little has been known about the initial

growth stage of this system, in particular the detailed atomic arrangements of the

GaAs(001) surface after adsoption of a submonolayer of In or InAs.

 STM studies of the In-terminated GaAs(001) (4×2) surface were first reported by

Resch-Esser et al. [55]. The structure was prepared by depositing 0.2 to 1.6 ML of In on

GaAs(001) (2×4) surfaces followed by annealing at 450 – 480 °C. Their STM image

over a large area of the surface covered by 1.6 ML of In showed that the surface

roughness was greatly reduced, i.e., the anisotropic 2D islands commonly observed on

the GaAs(001) (2×4) surface disappeared completely. Their high-resolution filled-state

images [Figure 6.3(a)] showed that for an In coverage of 0.25 ML the surface was

characterized by straight lines parallel to the [110] direction separated by 16 Å, leading

to the 4× period. The bright oval dots that composed the straight lines were, at least in

some areas, evident and appeared to have the ×1 period along the lines. As the In

coverage increased, the trench areas between the lines were gradually filled by bright

round dots with a spacing of 8 Å along the [1 10]  direction until a latter-type pattern was

completely formed at around a 0.5 ML coverage [Figure 6.3(b) and (c)]. For In

coverages below 0.25 ML, the straight lines turned into broken rows. In addition, four

faint corrugation maxima per (4×2) unit cell with roughly a 1×1 symmetry were clearly

resolved in the trench areas. Based on this evidence they concluded that the low-
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Figure 6.3  Filled-state STM images measured by Resch-Esser et al. [55] of the
GaAs(001):In (4×2) surfaces with approximately (a) 0.25 and (b) 0.5 ML of In. (c)
shows the same surface of (b) over a larger area. Each set of figures contains a 3D
image (bottom). All the images were obtained from J. Zegenhagen.

(a)
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(b)

Figure 6.3  (Continued)
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(c)

Figure 6.3  (Continued)
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Figure 6.4  The c(8×2) models proposed for the GaAs(001):In surface by Resch-Esser
et al. [55] based on STM for In coverages (a) below  and (b) above 0.25 ML.
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Figure 6.5  Two (4×2) models proposed for the GaAs(001):In surface by Xue et al.
[57, 58] based on STM. Notice that they attributed the straight lines in the images to
be the As dimer rows, in contrast to Resch-Esser’s interpretation.
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coverage surface can be described by a c(8×2) structural model [Figure 6.4(a)] similar to

the one proposed earlier by Biegelsen et al. [74] for the Ga-rich GaAs(001) (4×2)

surface [Figure 4.12(b)]. The straight lines in the STM images were attributed to the two

In dimers per unit cell in the first layer. The faint 1×1 spots in the trenches were assigned

to the As dangling bonds in the second layer. For the high-coverage surface [Figure

6.4(b)] they introduced additional In in the trenches accounting for the bright round

spots. Their Auger and reflectance anisotropy spectroscopy studies showed the presence

of a threshold coverage at 0.5 ML [55, 56].

In a study of VS-type MBE growth of InAs on GaAs(001), Xue et al. [57, 58]

reported STM images of the GaAs(001) surface covered by nominally 0.6 ML of In.

Their filled-state images showed a fully developed ladder-type pattern, which resembled

the one measured by Resch-Esser et al. [55] for an In coverage of 0.5 ML. The width of

the straight lines in Xue’s images appeared to be somewhat narrower. The filled-state

image recorded at a less negative bias (-1.6V) clearly resolved the individual oval dots

that formed the  straight line. Each pair of adjacent dots was spaced by 4 Å in the [110]

direction. They also were successful in obtaining an empty-state image, which showed a

reversed contrast between the straight lines (darker) and the round dots in the trenches

(brighter). Figure 6.5 show the two models proposed in their study for the (4×2)

structure.

Behrend et al. [59] and Belk et al. [22] have reported high-resolution STM images

of the (4×2) surfaces of 20 and 10 ML, respectively, of InAs deposited on GaAs(001)
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under In-rich conditions. Interestingly, these images also exhibited ladder-type patterns,

which looked remarkably like the patterns observed by Resch-Esser et al. [55] and Xue

et al. [57, 58] for In coverages of about 1 ML prepared under less As-rich conditions.

This ladder-type STM pattern therefore corresponds uniquely to the structure of an In-

terminated InAs surface on GaAs(001).

6.3 Experimental results

6.3.1 LEED and Auger

Figure 6.6(a) shows a typical Auger spectrum measured on an In-terminated

GaAs(001) surface. For this particular surface the In converge was calibrated to be 0.4

ML. Figure 6.6(b) shows the In coverage, based on a RBS-calibrated In MNN/Ga LMM

Auger peak ratio, measured as a function of the annealing temperature. The sample was

cut from an As-protected GaAs(001) wafer and then mounted directly onto a Mo sample

holder. The GaAs(001) (2×4) surface was initially deposited with approximately 0.4 ML

of In at room temperature. The annealing temperatures were estimated based on a

heating power versus sample temperature curve calibrated by a pyrometer. This Auger

study showed  that In desorption occurred at roughly 450 °C and the In adatoms can be

completely removed from the GaAs(001) surface at above 500 °C.

Figure 6.7(a) shows the (2×4) LEED patterns of the clean GaAs(001) surface

prepared at temperature T1. Figures 6.7 (b) – (e) show the corresponding LEED patterns

of the In-terminated surface recorded at two different energies after being annealed at
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Figure 6.6  (a) A typical Auger spectrum measured on an In-terminated GaAs(001)
surface. (b) In coverage of a GaAs(001):In surface measured as a function of the
annealing temperature.

(a)

(b)
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Figure 6.7  A series of LEED patterns of the In-terminated GaAs(001) surface
recorded at two different beam energies during the annealing experiment depicted in
Figure 6.6(b). (a)  shows the LEED patterns of the clean surface annealed at T1 prior
to the In deposition. (b) - (e) are the LEED patterns of the surface annealed at T1, T2,
T3 and T4 following the initial deposition of roughly 0.4 ML of In.

(a) T1 (clean surface)
    44 eV 87 eV

.     

(b) T1     44 eV 87 eV

     



143(c) T2      44 eV 87 eV

     

(d) T3      40 eV 87 eV

     

(e) T4      40 eV 87 eV

     Figure 6.7  (Continued)
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T1, T2, T3 and T4 in Figure 6.6(b). The surface exhibited a mixture of the (2×4) and

(4×2) symmetries after being annealed at T1 (420 °C). Below T1 the LEED pattern

remained (2×4) as was for the clean surface [56]. It transformed to a (4×1) pattern with

short streaks along the [110] direction through the 1×1 spots as the temperature

increased to T2 (450 °C). A sharp (4×2)/c(8×2) LEED pattern appeared at T3 (480 °C),

indicating the completion of the (2×4)-(4×2) transition and the formation of a stable

structure involving In adatoms. The LEED pattern remained essentially unchanged even

after the In had completely desorbed at T4 (520 °C). It is expected that this final (4×2)

surface was due to a Ga termination. It is interesting to note that the same Ga-rich (4×2)

LEED pattern was not observed for a clean GaAs(001) surface during a similar

annealing experiment up to 650 °C.

6.3.2 XSW measurements

The XSW measurements were conducted at beamline X15A of the National

Synchrotron Light Source (NSLS) at Brookhaven National Laboratory and at undulator

beamline 12ID-D (BESSRC) of the Advance Photon Source at Argonne National

Laboratory. The experiments focused on solving the In-terminated surface structures for

In converages lower than 0.25 ML, in which case less complexity is expected based on

the STM images [55].

Figure 6.8 shows typical x-ray fluorescence spectra recorded from an In-terminated

GaAs surface using a Si(Li) solid-state detector during GaAs(004) and (022) XSW scans
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Figure 6.8  Typical x-ray fluorescence spectra from the (004) and (022) XSW scans
measured from a GaAs(001):In surface. Three spectra are shown for each scan. The
intensities were integrated over the incident angle for different ranges (see text). The
incident beam energy Eγ was 7.3 kev for the (004) measurement and 6.2 keV for the
(022) measurement.
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at the NSLS. The three curves in each figure were the spectra integrated over angular

ranges of the low-angle side (L) and the high-angle side (H) of the rocking curve as well

as within the rocking curve (B). Angular modulations of the In L fluorescence intensities

during the rocking curve scans are evident in the spectra. The high background levels

around the In L peaks, which are more pronounced for the (022) scan due to the high

takeoff angle of the fluorescence photons resulting from the experimental setup, exhibit

a non-linear feature. This high background can be explained by an energy-loss process

(Bremsstrahlung radiation) of the Ga and As LIII photoelectrons from the substrate,

which leads to the characteristic edges about ΔE1 = 1.2 keV below the thermal diffuse

scattering (TDS) peaks. The curvatures of the backgrounds below the edges were mainly

caused by the absorption of the 0.005” Be window between the sample and the

fluorescence detector [60].

Figures 6.9 - 14 show five sets of experimental XSW data (filled circles) and the

best fits (solid lines) of the normalized In Lα fluorescence yields to the data [Eq. (2.72)]

and the reflectivities R versus the incident angles θ. The surfaces measured in these data

sets were covered by 0.2 – 0.4 ML of In. All the In depositions were on the

GaAs(001)(2×4) reconstructed surface at room temperature followed by an anneal at

elevated temperatures between 420 °C and 480 °C. The samples were prepared from As-

protected GaAs(001) wafers (see Chapter 5) and attached using indium to Si substrates

at 155 °C, which were then mounted onto Mo sample holders before being loaded into

the UHV system. Table 6.1 summarizes the surface preparation conditions and the
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Table 6.1  The calibrated In coverages (ΘIn), annealing temperatures (Tanneal),

LEED patterns and the results of the XSW analysis of the four GaAs(001) samples (S1

through S4) used in the present study.

Sample ΘIn
(ML)

Tanneal
(°C) LEED XSW

H Figure fH PH

S1* 0.3 480 (4×2)/ (004) 6.9(a) 0.60 ± 0.09 1.14 ± 0.02

c(8×2) (1 11) 6.9(b) 0.57 ± 0.01 1.00 ± 0.01

(111) 6.9(c) 0.28 ± 0.01 0.67 ± 0.01

S2* 0.2 480 (4×2)/ (004) 6.10(a) 0.46 ± 0.04 1.14 ± 0.02

c(8×2) (1 11) 6.10(b) 0.59 ± 0.02 0.99 ± 0.02

(111) 6.11(b) 0.37 ± 0.02 0.66 ± 0.02

(022) 6.11(a) 0.43 ± 0.03 0.54 ± 0.02

S3* 0.4 450 (4×1)** (004) 6.12(a) 0.37 ± 0.05 1.13 ± 0.02

(022) 6.12(b) 0.03 ± 0.03

S4# 0.2 ≤ 420 (2×4) (004) 6.13(a) 0.55 ± 0.02 1.00 ± 0.01

(022) 6.13(b) 0.33 ± 0.03 0.85 ± 0.01

S4# 0.2 450 (4×1)** (004) 6.14(a) 0.27 ± 0.03 0.96 ± 0.02

(022) 6.14(b) 0.23 ± 0.03 0.65 ± 0.03

* Experiments were conducted at the NSLS/X15A.
# Experiments were conducted at the APS/12ID-D.
** The (4×1) pattern exhibited short streaks along the [110] direction through the 1×1
spots, similar to the one shown in Figure 6.7(c).



148

Figure 6.9  The (004), (111) and (111) XSW experimental data and analysis for
sample S1.
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Figure 6.10  The (004) and (111) XSW data and analysis for sample S2.



150

Figure 6.11  The (022) and (111) XSW data and analysis for sample S2.
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Figure 6.12  The (004) and (022) XSW data and analysis for sample S3.
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Figure 6.13  The (004) and (022) XSW data and analysis for sample S4 annealed at
420 °C.
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Figure 6.14  The (004) and (022) XSW data and analysis for sample S4 annealed at
450 °C.
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results of the XSW analysis. The coherent fractions fH and the coherent positions PH

were determined by χ2 fits of Eq. (2.72) to the In Lα fluorescent yields. The In surface

coverages were estimated from a RBS-calibrated In MNN/Ga LMM Auger peak ratio.

This ratio was determined to be approximately 1.3 for a full ML of In adsorbed on the

GaAs(001) surface. The annealing temperatures were estimated based on direct

temperature measurements using a pyrometer as well as the surface LEED patterns after

heat treatments.

6.4 Discussions

6.4.1 XSW analysis: (4×2)/c(8×2)

We first consider samples S1 and S2 (Figures 6.9 and 6.10), both of which were

annealed at 480°C and exhibited the sharp (4×2)/c(8×2) LEED pattern. The coherent

positions of the (004), (1 11)  and (111) reflections from S1 and S2 were essentially

identical, indicating that the surface structures were similar, regardless of the slight

coverage difference between S1 and S2. Since the data set from sample S2 contains one

extra measurement at the (022) reflection, which has provided important structural

information, the following discussion will be focused on the results of sample S2.

The (004) coherent fraction and the coherent position for sample S2 were

determined to be f004 = 0.46 ± 0.04 and P004 = 1.14 ± 0.02. If we consider symmetric In

dimers the major surface structure, as was proposed by Resch-Esser et al. for an In-
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terminated GaAs(001) surface at ΘIn < 0.25 ML, this measured P004 would directly locate

the In dimer to be P004d004 = 1.61 ± 0.03 Å above the last substrate (004) diffraction

plane. This In height is comparable to the bulk In position we reported earlier by XSW

for a 1 ML InAs buried in a GaAs(001) matrix [7.10], but much lower than the Sb

position measured on the GaAs(001):Sb (2×4) surface by XSW, as discussed in Chapter

5. Other (004) measurements at higher In coverages (data not shown) showed that f004

dropped drastically to around 0.15 as the coverage went beyond 0.5 ML, suggesting the

development of a second structure. This is consistent with the ladder-type pattern

observed by the STM study for ΘIn > 0.25 ML.

Based on the (004) result, it is possible to calculate the coherent positions that would

be expected at other Bragg reflections based on a simple structural model. Generally this

can be achieved by using symmetry arguments. For the present semiconductor surface, a

two-fold symmetry has to be satisfied by the adsorption sites for each surface structure.

As a result, the average positions measured at the various Bragg reflections must finally

intersect at a point on one of the two-fold axes normal to the surface (this would not be

the case if the adsorbate occupies two or more than two non-equivalent two-fold

symmetry sites). For example, Figure 6.15(a) shows the [110] projection of a

(unreconstructed) GaAs(001) surface, where A, B, C and D are the locations determined

by the (004) XSW result of S2 and two vertical mirror planes. For the (111) reflection,

the corresponding coherent positions (with P111  = 0 at the (111) Ga planes) can be related

to P004 by P111  = (P004 + n) / 4 , where n = 3, 2, 1 and 0 for A, B, C and D, respectively.
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Figure 6.15  (a) - (c) The [110], [010]  and [110]  projected views of various symmetric
sites (A – H) on the unreconstructed GaAs(001) surface. The vertical and horizontal
dashed lines represent the two-fold symmetry axes and the measured In (004) coherent
position for S2, respectively. (d) Possible adsorption sites on the GaAs(001) surface.
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Therefore, by symmetry P111  is expected to be 1.04, 0.79, 0.54 or 0.29. Our (111)

measurement [Figure 6.10(b)] showed that P111  = 0.99 ± 0.02, which agreed reasonably

well with the In position located by site A. This implied that the distribution of the In ad-

atoms, as projected back to a surface unit cell, was symmetric in the [110]  direction

around the bulk mirror plane indicated by the dashed line through A and B in

Figure.6.15(a) This result is consistent with the Resch-Esser’s In-dimer model.

Using the same approach, two different sites on the [010]  projection [E and F in

Figure 6.15(b)] were considered to be the possible candidates for the average In position

which satisfied both the two-fold symmetry and the (004) and (111) measurements.

Their (022) coherent positions were calculated to be 1.07 and 0.57 using the geometrical

relationship P022 = (P004 + m)/2 with m = 1 and 0 for E and F, respectively. Notice that if

the In adatoms form dimers as described by the Resch-Esser’s model, the (022) XSW

would measure the coherent position to be at point E (this includes the consideration of a

reasonable In dimer bond length). The calculated In yield for P022 = 1.07 is plotted as a

dash line in Figure 6.16(a). However, the best fit to the fluorescence data [solid line in

Figure 6.16(a)] yielded P022 = 0.54 ± 0.02, in good agreement with the symmetry site F.

The contradiction between the (022) measurement and Resch-Esser’s model (dashed

line) was evident in Figure 6.16(a), where the modulations of the simulated and the best

fit for the measured In yields were almost 180° out of phase with respect to each other.

When combined with the (111) result, the (022) measurement suggests that the In

distribution is centered at a two-fold symmetry site above the hollow [Figure 6.15(d)]
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Figure 6.16  Calculated In fluorescence yields (dashed lines) based on Resch-Esser’s
model [Figure 6.4(a) and Ref. 55] compared with the present XSW measurements for
sample S2 for (a) the (022) reflection and (b) the (111) reflection. The (004) coherent
position for the model was assumed to be the same as the measured value (1.14).
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surrounded by four As atoms in the first layer [B in Figure 6.15(a)], instead of being

above the bridge between two neighboring As atoms along the [110] direction [Figure

6.15(d) and A in 6.15(a)], as is the case for the Resch-Esser’s model.

These two different local structures, the one observed by XSW and the one proposed

based on STM, should also become distinguishable when projected into the (111) plane

[Figure 6.15(c)]. Based on the measured P004, P111 can be predicted by symmetry to be

P111 = (P004 + k)/4 (with P111 = 0 at the (111) Ga planes) with k = 3 or 1 for the two

possible two-fold symmetry sites G and H, respectively, in Figure 6.15(c). This simple

formula renders P111 = 0.54 for G and 1.04 for H. It can be shown that the Resch-Esser

STM model predicts the In position to be close to site G, while the (022) XSW is

consistent with the In location at H. Figure 6.11(b) shows the (111) result and the P111

was measured to be 0.66 ± 0.02. The discrepancy between this value and the estimated

(111) position for site G [Figure 6.16(b)], along with the earlier discussion based on the

(022) measurement, has led us to the conclusion that the detailed structure of the In-

terminated GaAs(001) (4×2)/c(8×2) reconstruction can not be described correctly by the

Resch-Esser model. This also implies that the In-induced (4×2)/c(8×2) surface does not

form the same structure as the one generally accepted for the Ga-rich (4×2) clean

surface. The disagreement between the (111) measurement and the predicted position at

H is much smaller, but still exceeds the XSW experimental errors. This suggests that the

In structure on the surface was not quite as simple as the single-site model used above.
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We compare the calculated coherent positions based on the Resch-Esser’s model and the

hollow site H in Figure 6.15(c) with the XSW measurements on sample S2 in Table 6.2.

Table 6.2  The calculated coherent positions based on the Resch-Esser’s model and

the hollow site H in Figure 6.15(c) compared with the XSW results from sample S2.

The (004) coherent positions were assumed to be the same as the measured value

(1.14) for both calculations.

S2 Measured P Calculated P
(hollow site H)

Calculated P
(Resch-Esser’s

Model)
(004) 1.14 1.14 1.14

(-111) 0.99 1.04 1.04

(111) 0.66 0.54 1.04

(022) 0.54 0.57 1.07
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We have qualitatively determined the center of the In distribution based on the

coherent positions measured at the various Bragg reflections. The next step would be to

examine the distribution width of the In atoms around the center, which is directly

related to the coherent fractions. To help the discussion to proceed, we first express the

coherent fraction fH as a product of three factors according to the convolution theorem as

fH = CaHDH, i.e., the product of the ordered fraction (C), the geometrical factor (aH) and

the Debye-Waller factor (DH), as discussed in Chapter 5. Here we also use the DH values

of the bulk GaAs for the In adatoms (D004 = 0.86, D111 = D111  = 0.97, and D022 = 0.93).

Our attention was first drawn to the fact that f111 is significantly lower than f111 , and

also that f022 is smaller than f004. This variation in fH implies that a111 and a022 are both less

than unity, i.e., multiple positions along the [110] direction are expected for the In. This

may be explained if we adopt an In dimer model, as is the case for the Sb-terminated

GaAs(001) surface (see Chapter 5). We may assume that an attraction along the [110]

direction brings two neighboring In atoms closer together and causes the local symmetry

to change from 1 ×1 to 1 × 2  [the modified hollow site in Figure 6.15(d)]. We estimated

the distance L between two In atoms for this 1 × 2  structure to be 3.33 Å using the

geometrical relationship L = 2d022
π

cos−1(− f022D004

f004D022
)  (see Chapter 5), assuming a simple

dimer model. This large distance, as compared with the In covalent radius (2rIn = 2.88

Å), indicates that the dimerization of the In adatoms, if any, is very weak. This finding is

consistent with the STM observations at low coverage [55] which showed that the

straight lines corresponding to In atoms were formed by oval dots separated by 4 Å
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along the [110] direction, i.e., the local In arrangement had a ×1 symmetry rather than

the ×2 period predicted by the Resch-Esser’s model.

The above XSW analysis carried out on samples S1 and S2 (annealed at 480 °C) can

be summarized as the following. The XSW measured In positions with respect to the

substrate lattice showed clear disagreement with the previous (4×2)/c(8×2) model

proposed by Resch-Esser et al. [55], which was based on the structural model generally

accepted for the GaAs(001) Ga-rich (4×2) reconstruction [74]. In Resch-Esser’s model

the In adatoms were located at the modified bridge sites (as are the cases for most of the

dimerized (001) semiconductor surfaces) forming two In dimers per (4×2) unit cell in the

first layer. Our off-normal XSW measurements (particularly the (022) measurement)

indicated that for In coverages < 0.25 ML the In adatoms were most likely to occupy the

two-fold symmetry site above the hollow among the 4 neighboring surface As atoms.

Further analysis of the measured coherent fractions showed evidences that along the

[110] direction the adjacent In atoms were either spaced with the 1-fold period or weakly

dimerized. This finding was consistent with the high-resolution features revealed by

STM.

6.4.2 Structural model for GaAs(001):In (4×2)/c(8×2)

To construct a complete structural model for the (4×2)/c(8×2) unit cell requires

further knowledge of the locations of the As and Ga atoms in the second and third layers,
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which are not available from the present XSW studies. However, complementary

information may be obtained from the previous STM studies.

Based on the high-resolution STM image shown in Figure 6.3(a), there are at least

three features that need to be reasonably explained by the proposed model for a low In

coverage. First, the bright straight lines parallel to the [110] direction in the images have

been identified indirectly to be In atoms. This was based on the fact that the straight lines

were previously broken lines, which turned gradually into complete straight lines as the

In coverage increased, and this was the only modification of the surface observed by

STM during the sub-ML In deposition [62]. Notice that the surface In atoms showed

much higher contrast in these images than the Ga atoms did in the images of the

GaAs(001) Ga-rich (4×2) surface [75, 76]. This basically reflects the fundamental

difference of the atomic electronic structures between the two elements. This high

contrast shown by the In adatoms is consistent with what has been observed on the

InAs(001) In-rich (4×2) surface by STM [9]. Furthermore, the local ×1 symmetry

exhibited by the oval spots along the In rows resolved in the STM images has to be

satisfied by the proposed model. Second, the atomic arrangement of the bare surface in

the trench areas for the proposed model needs to be able to yield a reasonable

interpretation for the four (virtual) 1×1 faint spots observed in each (4×2) unit cell.

Finally, the proposed model has to be successful in explaining the alignment in the

[1 10]  direction between the faint spots in the trench areas and the bright oval spots

along the In rows.
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Figure 6.17  (a) The proposed c(8×2) model for the GaAs(001):In surface with an In
coverage of 0.25 ML based on the present XSW analysis and the previous STM
studies. Also shown is a (4×2) unit cell, which may coexist on the surface with the
c(8×2) structure. (b) A (4×1) model constructed by changing the termination of the
bare surface in the trenches from Ga dimers in (a) to As dimers (see text).
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We now propose a new structural model for the In-induced GaAs(001) (4×2)/c(8×2)

surface for a low In coverage based on our XSW analysis and the previous STM

observations. As shown in Figure 6.17(a), a c(8×2) unit cell is denoted by the shaded

area. It contains four In atoms per c(8×2) unit cell in the first layer, corresponding to a

coverage of 0.25 ML. The In atoms are located at the hollow sites surrounded by four As

atoms in the second layer, consistent with the XSW measurements. In this model the As

atoms in the second layer underneath the In rows are considered to be dimerized along

the [1 10]  direction based on simple electronic considerations. Whether the In adsorption

at the hollow sites will break the underlying As dimers or induce a more complicated

local structure is still debatable and requires more experimental evidences. The surface

In monomers are separated by 4 Å and form rows in the [110] direction, which agree

with the ×1 symmetry of the oval spots along the straight line observed in the STM

images. The four-fold symmetry in LEED pattern corresponds to the 16 Å spacing

between the In rows in the [1 10]  direction. Notice that any model predicting the

formation of In dimers is incompatible with the STM observations, as discussed earlier.

In Figure 6.17(a) the trench areas between the In rows are terminated by the Ga

dimers in the third layer. The four Ga dimers in the trenches per c(8×2) unit cell are

considered to be responsible for the virtual 1×1 faint spots resolved in the STM images.

It  is interesting to notice that in Figure 6.3(a) the faint spots in the image actually

appeared as packed in groups of four and exhibited locally a two-fold period along the

[110] direction (i.e., not truly 1×1). This is consistent with the dimerization of the Ga
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atoms, which is usually expected to occur only in the [110] direction. These Ga dimers

also lead to the global ×2 symmetry observed in LEED. Furthermore, this structural

model well explains the alignment between the oval dots and the faint spots in the STM

images: In Figure 6.17(a) the positions of the In atoms in the [110] direction are in phase

with the Ga atoms in the third layer. If the In atoms are removed from the surface, the

structure in Figure 6.17(a) becomes the same as the c(8×2) model proposed earlier by

Skala et al. [3.55] for the GaAs(001) Ga-rich surface. It becomes also similar to the

model proposed by Torrelles et al. [61] for the In0.04Ga0.96As(001) (4×2) surface based on

surface x-ray diffraction.

In Figure 6.17(a) a (4×2) unit cell is also shown based on our proposed model. The

c(8×2) unit cell is constructed by shifting the (4×2) unit cells (or the Ga dimers in the

trenches) by 4 Å along the [110] direction for every other rows. This shift is evident in

many areas in the STM image in Figure 6.3(a).

The model in Figure 6.17(a), however, is still not completely satisfactory. One

question is whether or not the Ga dimers in the trenches can be resolved in a filled-state

STM image [62], as is the case in Figure 6.3(a). This concern arises from the fact that

filled-state images are less sensitive to the Ga empty dangling bonds. One plausible

solution would be to assume in the model that the trench areas are terminated by As

dimers in the second layer [Figure 6.17(b)], whose dangling bonds could be resolved by

filled-state STM and contribute to the 1×1-like faint spots in the images. Nevertheless,

this model would render a (4×1) rather than a c(8×2) [or a (4×2)] LEED pattern, unless
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the In adatoms are fully dimerized in the [110] direction. In addition, the positions of the

In atoms are 180° out of phase in the [110] direction with the As dimers in the second

layer, inconsistent with the STM results. We therefore concluded with the model shown

in Figure 6.17(a).

It is somewhat surprising, in comparison with all the generally accepted models

related to the GaAs(001) surface, that the In adatoms adsorb at the hollow sites and do

not form In-In dimers. However, it is not unusual for In to form unexpectedly complex

structures on semiconductor (001) surfaces. The In-terminated Si(001) and Ge(001)

surfaces have been studied by LEED, STM, PES, photoelectron diffraction and surface

x-ray diffraction [63 - 67]. It was reported that the Si(001) surface exhibited a (4×3)

reconstruction upon the adsorption of 0.5 ML of In at a substrate temperature above 150

°C. The structure of this surface has been recently determined by Bunk et al. [66] using

surface x-ray diffraction and STM. The In adatoms were found all to be three-fold

coordinated with the Si atoms, instead of forming In-In dimers. This is in contrast with

the structure of the Si(001):Ga (2×2) surface of a similar coverage, which has been

showed to form Ga-Ga dimers parallel to the underlying Si dimers [68].

6.4.3 XSW analysis: Streaky (4×1)

For samples S3 and S4, which were annealed at lower temperatures (≤ 450 °C), the

results of the XSW measurements were less conclusive. The surface of S3 was deposited

with 0.4 ML of In and annealed at 450 °C. The LEED study afterwards revealed a (4×1)
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pattern with short streaks along the [110] direction through the 1×1 spots, indicating the

structural transition from the As-rich (2×4) to the In-rich (4×2) was incomplete. The

experimental values of f004 and P004 [Figure 6.12(a)] were reasonably close to the

previous results from samples S1 and S2. Interestingly, the (022) coherent fraction was

measured to be close to zero. This could be due to the high In coverage and low-

temperature annealing, which resulted in a surface structure having two In sites that were

180° out of phase to each other with respect to the (022) planes.

Sample S4 was the only one measured at the 12ID beamline of the BESSRC CAT,

after the entire UHV system was relocated from the NSLS to the APS. The In coverage

was estimated to be 0.2 ML. The first two XSW measurements (Figure 6.13) were

carried out after the surface was annealed at about 420 °C. The LEED pattern remained

(2×4) at this stage. The sample was then annealed again to about 450 °C before the

second part of XSW measurements (Figure 6.14). Upon the second annealing the (2×4)

pattern vanished and turned into a (4×1) symmetry similar to the one observed on

sample S3. The (004) XSW measurements showed a reduction of the coherent fraction

after the second annealing, which was consistent with the incomplete (2×4)-(4×2)

transition suggested by the streaky (4×1) LEED pattern. It is interesting to notice that the

surface structure was able to yield a high In (004) coherent fraction even before the

stable (4×2) reconstruction began to develop. More surprisingly, the measured (004)

coherent positions of sample S4 were much lower than those from the previous samples.

The (022) measurement indicated that the center of the in-plane distribution of the In



169

atoms was shifting from a bridge-site-like position towards a hollow-site-like position

during the (2×4)-(4×2) transition.

The above XSW and LEED studies demonstrated how sensitive the structure of the

GaAs(001):In surface was to the overall preparation conditions, in particular the

annealing temperature. However, due to the limitation of time, the XSW experimental

setup used at the APS for sample S4 was far away from being optimized, particularly for

detecting low energy (< 4 keV) fluorescence x-rays from adsorbates of less than 0.5 ML

[69]. Further XSW measurements are necessary to confirm the results on sample S4.

 6.5 Summary

We have investigated the surface structure of the In-induced GaAs(001)

(4×2)/c(8×2) reconstruction for In converages < 0.5 ML using LEED, Auger and XSW.

Indium was deposited at room temperature onto the GaAs(001) (2×4) surface prepared

by thermally desorbing an As protective layer. A sharp (4×2)/c(8×2) LEED pattern was

observed after the substrates were annealed at 480°C. Further annealing at ≥ 500 °C

resulted in complete desorption of the In adatoms. The XSW analysis on the surfaces

terminated with 0.2 – 0.3 ML of In annealed at 480 °C showed clear disagreement with

the previous model proposed by Resch-Esser et al. [55], which was based on the

structure widely accepted for the GaAs(001) Ga-rich (4×2) reconstruction. It predicted

the formation of two In-In dimers per (4×2) unit cell in the first layer over the modified

bridge sites. Surprisingly, we found that the In adatoms were located above the hollow
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sites, and the formation of In-In dimers was unlikely. Based on our findings and the

previous STM studies we proposed a new (4×2)/c(8×2) model for this surface. It is

characterized by In monomers lining up at the hollow sites above As dimer rows with

the trench areas between the In rows terminated with Ga dimers in the third layer. Each

c(8×2) unit cell contains four In monomers, leading to a coverage of 0.25 ML. The ×2

symmetry is due to the Ga dimerization in the [110] direction. The 8× symmetry is due

to the 16 Å separation in the [1 10]  direction between the In rows as well as the 180°

phase shift of the Ga-dimer positions along the [110] direction between the adjacent

rows. This model agrees qualitatively with the present XSW results and is able to

explain most features observed by STM. However, quantitatively the agreement between

the model and the XSW measurements is unsatisfactory. This suggests that the real

structure of the surface may be more complicated. Further modification of this model is

expected in the future upon the availability of new experimental evidence [70].



Chapter 7 Stains and Lattice Distortions in Buried Heterolayers

7.1  Introduction

X-ray standing wave measurements were used to study the strain in one ML of

pseudobinary semiconductor alloys buried in (001) and (111) substrates [1]. For the (001)

direction InxGa1-xAs monolayers were grown in GaAs(001) by molecular beam epitaxy.

The measured In position along the [001] direction exhibited a nearly linear dependence on

the In concentration x, thus supporting the validity of macroscopic continuum elasticity

theory at the one ML limit. A random-cluster calculation using the Keating valence force

field was performed to explain microscopically the origin of the vertical expansion of the

strained ML observed by the experiment. The calculated As-In-As bond angle and the

positions of the first nearest neighbor As atoms of In suggest that the nearly linear

dependence of the In height on the alloy composition is a combined result of the As-In-As

bond bending and the local lattice distortion at the GaAs/InxGa1-xAs interface. The

calculated In-As and Ga-As bond lengths were found to depend weakly on the In

concentration, consistent with an earlier calculation for the case of a thick InxGa1-xAs film

on GaAs(001) and the available EXAFS data. In addition, we applied the evanescent-wave-

emission effect to directly measure the vertical displacement of the GaAs cap induced by

the strain in a buried InAs layer. The measured cap displacement showed good agreement

with the In position and continuum elasticity theory. Nevertheless, our off-normal {111}

XSW measurements revealed an unexpected anisotropic In distribution in the buried

layers.

171
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For the (111)-oriented strained layers, InSb(111)/ 1 ML InAsxSb1-x heterostructures

were measured by XSW and EXAFS. The XSW measured As (111) positions in the films

showed a strain effect much larger than what was suggested by continuum elasticity theory.

However, the EXAFS measurements detected no significant bond length split between the

in-plane and out-of-plane In-As bonds, which was predicted by a random cluster

calculation using Keating valence force field to be as large as 0.05 Å for x = 1.

7.2  Strains in GaAs(001)/InGaAs

Highly strained III-V semiconductor heterostructures, e.g. InGaAs/GaAs, have been

widely investigated and used in devices such as high-speed transistors and quantum-well

lasers [2]. Recent studies of monolayer-period strained III-V superlattices have

demonstrated great potential in forming a new type of nanostructure with enhanced optical

properties [3]. In predicting electronic and optical properties, continuum elasticity theory is

used to evaluate the strain state [4]. In a planar pseudomorphically-grown heterostructure,

the film is constrained to have the same in-plane lattice parameters as the substrate, while it

is free to relax in the growth direction. This results in a distortion of the unit cell of the

film. Based on macroscopic continuum elasticity theory, for cubic materials with the film

parallel to the (001) plane, the strain normal to the (001) plane (ε⊥) is related to the in-plane

strain (ε||) by (Appendix A):

ε⊥ = −2
C12
C11

ε || , (7.1)
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where Cij are the bulk elastic constants for the embedded material. For InAs/GaAs, these

constants are C11 = 8.329 x 106 N/cm2 and C12 = 4.526 x 106 N/cm2 for InAs [5], and the

lattice misfit between InAs and GaAs leads to ε|| = -6.7%. Thus, Eq. (7.1) predicts a strain

of ε⊥ = 7.3% for a pseudomorphic InAs layer buried in GaAs(001). Experimental evidence

from Brandt et al. [6], based on a high-resolution electron microscopy (HREM) analysis,

showed good agreement with Eq. (7.1) for a 3 monolayer (ML) InAs sample, but gave a

much larger ε⊥ (12.46%) for a sample with one ML of InAs. This discrepancy has drawn

attention to the issue of whether macroscopic elasticity theory can correctly describe the

strain in an ultra-thin film [7 – 11].

In the present work, we performed an x-ray standing wave (XSW) study to directly

measure the strain in one ML of InxGa1-xAs buried in GaAs(001) by precisely locating the

indium position relative to the underlying GaAs substrate unit cell. These results are shown

to agree favorably with the macroscopic continuum elasticity theory. In addition, I carried

out a random-cluster calculation for a buried ML using the Keating valence-force field to

understand the local structural variations in the thin heterolayers. This calculation provides

us with more insight into the microscopic behavior of strain in ML-thick films.

The films were grown by conventional molecular-beam epitaxy (MBE) on semi-

insulating polished GaAs substrates cut within 0.5° of the (001) plane. The substrates were

cleaned with acetone and methanol and mounted using indium on a silicon block that

served as a resistive heating element. They were then inserted into the MBE chamber and

annealed for 10 minutes at a substrate temperature Ts = 570° C in a 2 x 10-3 Pa As4

overpressure. In situ substrate cleaning was carried out with 1 keV Ar ions impinging at

15° from the surface in the [001] direction up to a dose of 2.3 x 1016 cm-2s-1 at the same
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Ts and As4 ambient. These bombardment conditions for as-prepared GaAs substrates have

been shown to yield smooth, essentially defect-free GaAs surfaces [12]. A 2 µm GaAs

buffer layer was first grown on the sputter-cleaned GaAs surface at Ts = 570° C. During

the last 1000 Å of the buffer-layer growth, Ts was ramped down to 500°C. One ML of

InxGa1-xAs was then deposited at 500° C followed by a 100-Å-thick GaAs capping layer

grown at the same Ts. Three samples with different In concentrations were prepared for the

XSW measurements.

The chemical composition of each buried layer was measured by fluorescence yield

analysis using an In-implanted Si crystal with a concentration calibrated by Rutherford

backscattering as the standard. By comparing the fluorescence yields of the samples to

those of the standard, the absolute In coverages of samples A, B and C were determined to

be 0.4, 0.6 and 1.1 ML, respectively, with an estimated uncertainty of 0.1 ML. By applying

Eq. (7.1), and assuming Vegard's law, the macroscopic elasticity theory predicts the

perpendicular strains within the InxGa1-xAs layers of sample A, B and C to be  2.7%, 4.1%

and 7.3%, respectively.

The XSW experiments were performed at beamline X15A of the National

Synchrotron Light Source (NSLS) [13]. The measurement consists of simultaneously

recording the fluorescence spectra and the reflectivity from a sample while scanning a

double-crystal Si(004) monochromator in energy through the (004) Bragg reflection of the

GaAs substrate [14]. This scan causes the standing wave to phase shift inward by one-half

of a d-spacing relative to the hkl diffraction planes, and induces a characteristic modulation

of the fluorescence yield. The samples were kept in a helium atmosphere throughout the x-

ray measurements in order to eliminate Ar Kα from the fluorescence spectrum and to
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reduce the attenuation of the low energy fluorescent x-rays. The data were analyzed based

on von Laue and Ewald's dynamical-diffraction theory [15] and the procedure described in

Section 2.3.

Table 7.1  Results of the (004) XSW measurements. The coherent fractions f004 and

coherent positions P004 were determined by χ2 fit of Eq. (2.72) to the data. The theoretical

values of ε⊥ and P004 were obtained by applying Eq. (7.1) and Eq. (7.2) for A and B,

respectively, using calibrated x values. The ε⊥ of C was calculated for 1 ML of buried

InAs. The theoretical P004 was derived from the (004) Fourier component of 1.1 ML of

strained InAs (see text).

Sample Thickness
(ML)

x f004 P004
ε⊥

theory P004
theory

A 1 0.4 0.79 ± 0.02 1.05 ± 0.01 2.7% 1.056

B 1 0.6 0.77 ± 0.02 1.08 ± 0.01 4.1% 1.086

C 1.1 1.0 0.67 ± 0.02 1.165 ± 0.01 7.3% 1.165
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Figure 7.1  The (004) XSW data and the theory (solid lines) for the normalized In L
fluorescence yields and the GaAs(004) reflectivity R versus incident angle θ for (a)
samples A and B and (b) sample C (see text and Table 7.1). The In L curve for sample B
is offset by 1 for the purpose of clarity.

x = 1.0

x = 0.6

x = 0.4
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Figure 7.1 shows the In L fluorescence yields as a function of the incident angle θ for

samples A, B and C along with the (004) reflectivity R. The parameters of the XSW

analysis, determined by the best fits of Eq. (2.72) to our data, are summarized in Table 7.1.

For samples A and B, if one assumes that the In occupies only one lattice position when

projected along the [004] axis, i.e., a004 = 1 [16], the In coherent fraction f004 should be

close to the room-temperature GaAs(004) Debye-Waller factor D004 = 0.86 [17]. The

present measured coherent fractions for A and B, when compared with D004, can be

interpreted to mean that 91% (C = 0.91) of the In atoms are located at the ordered positions

defined by their P004, and the remaining 9% are randomly distributed. The high measured

values of f004 indicate that under the specified growth condition a buried heterostructure

with 1 ML InxGa1-xAs well confined in a single layer has been achieved.

The In coherent positions determined in Figure 7.1 are P004 = 1.05 ± 0.01 for sample

A and P004 = 1.08 ± 0.01 for sample B, which locate the heights of the In to be 1.48 ±

0.01 Å and 1.53 ± 0.01 Å, respectively, above the nearest As plane extrapolated from the

substrate (Figure 7.2). Based on Vegard’s law, the (004) d-spacing of cubic InxGa1-xAs is

1.454 Å for x = 0.4 and 1.474 Å for x = 0.6. Therefore, our measurements have detected a

vertical expansion of the buried layer due to the lateral compression. The elastic

deformation of a unit cell can be, in general, described macroscopically by the continuum

elasticity theory. However, when applying the same theory to a one-ML-thick strained film,

certain issues must be considered more carefully. First, strain is a relative quantity;

therefore, the placement of the boundary of the strain-effected region is more critical for the

case of a buried single monolayer. Second, within the strained region, the lattice
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Figure 7.2  The [110] projected side view depiction of a pseudomorphically grown 1
ML InxGa1-xAs buried heterostructure. The dashed lines represent the (004) Ga and As
planes of the GaAs substrate, and the solid line indicates the In/Ga position in the buried
film with respect to the (004) planes.
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 deformation must be uniform to allow the strain calculated in Eq. (7.1) to be used for

predicting the position of an atom in the strained layer. For an (001)-oriented film of zinc-

blende structure, this uniformity is ensured by the fact that the four different directions

along the tetrahedral bonds are all equivalent with respect to the in-plane stress imposed by

the substrate. If we assume that the boundary of the strained region is at the nearest As

planes above and below the InxGa1-x layer, the indium (004) coherent position can be

related to the vertical strain ε⊥ by

P004 = (1+ ε⊥ )a f0 / as0 , (7.2)

where as0 = 5.6532 Å is the GaAs substrate lattice constant, and af0 is the unstrained bulk

lattice constant for the InxGa1-xAs layer. Therefore, macroscopic continuum elasticity

theory [Eq. (7.1)] predicts, through Eq. (7.2) and Vegard’s law, that the In height P004

increases in a nearly linear manner from 0 to 0.15 as x varies from 0 to 1. In particular, Eq.

(7.2) predicts that P004 = 1.056 for sample A and P004 = 1.086 for sample B, in good

agreement with the present XSW measurements.

For sample C, the geometrical factor a004 is expected to be smaller than unity due to

the multiple In positions. If we model the buried layer as one full ML of InAs plus 0.1 ML

of InAs in the second layer, the In distribution could be characterized by two distinct lattice

positions z1 and z2, and the corresponding (004) Fourier component would become

CD004[0.91exp(2πiz1 ) +  0.09exp(2πiz2 )] . The vertical strain of 7.3% for InAs on

GaAs(001) suggests that z1 = 0.15 and z2 = 0.45. We can therefore express the coherent
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fraction to be f004 = 0.76C , which estimates C = 0.88 as compared with the measured f004

= 0.67. The coherent position calculated from this simple model is 1.165, in good

agreement with the experiment as well.

On a microscopic scale, Woicik et al. recently reported bond length calculations based

on a random-cluster approximation for tetragonally distorted InxGa1-xAs layers on

GaAs(001), GaAs(111) [18] and InP(001) [19]. Excellent agreement of these calculations

with measurements has been demonstrated by EXAFS [19, 20] and diffraction anomalous

fine structure (DAFS) [21]. Their (001) calculations showed that the In-As bond length in

the strained film depended very weakly on the In concentration x, in contrast to the

monotonous increase of the In height measured in our present work and predicted by

macroscopic elasticity theory. The cluster used in Woicik’s calculation, however, is for

films much thicker than one ML. If the In-As bond length exhibits the same constancy

behavior at the one ML limit, mechanisms other than bond stretching must exist to account

for the variation of the In positions we measured. To understand microscopically how the

lattice of a buried single layer responds to a biaxial stress, and to compare it with the

macroscopic description of strain effect discussed above, we performed a similar random-

cluster calculation for one ML of InxGa1-xAs buried in GaAs(001). The results of our

calculation agree well with the present XSW measurements as well as the previous

theoretical predictions [18, 22] and experimental observations [9, 11, 20, 21] for the local

structures of InGaAs strained layers.

Our calculation follows essentially the approach discussed in Ref. 18, which is a

simplified version of the quasichemical approximation (QCA) developed by Sher et al.

[23]. Figure 7.3 shows the 42-atom cluster together with the 44 medium atoms used in the

present calculation. The cluster was constructed from a planar core to account for the
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Figure 7.3  The 42-atom cluster and the surrounding 46 medium atoms used in the
present calculation for 1ML InxGa1-xAs buried in GaAs(001). During the energy
minimization, only the atoms within the cluster are allowed to relax. The medium atoms
are fixed at their tetragonally distorted virtual-crystal sites.
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2-dimensional nature of the buried ML. The 4 cation sites at the center of the cluster are

occupied randomly by j In atoms and 4-j Ga atoms. The 12 anions in the first shell are As

atoms. In the second shell, the top and the bottom layers are occupied by 18 Ga atoms, and

the middle layer is occupied by 8 InxGa1-x virtual atoms (each one has the properties

averaged over In and Ga based on x). Finally, there are 44 As atoms in the third shell.

Statistically the QCA method requires the cluster to be independent of the surrounding

matrix. To uncouple the cluster from the rest of the lattice, the 44 third-shell As atoms (or

the medium atoms) are fixed at their tetragonally distorted virtual-crystal sites.

For the zinc-blende structure, the short-range interaction between atoms can be

described by the Keating valence-force field [24] model, where the total strain energy of the

system is expressed as a two-force-constant equation

               E =
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The first term is the strain energy due to bond stretching, characterized by the two-body

radial-force constant α and summed over all the bonds within the cluster. The second term

accounts for the strain energy due to bond bending, characterized by the three-body

angular-force constant β and summed over all the atoms within the cluster [25]. The r’s are

the bond vectors between two neighboring atoms and the subscript 0 denotes a unstrained

bond length. The energy due to chemical effects was ignored in this calculation [18]. To

correct the overestimation of the strain energy caused by fixing the medium atoms in space

[23], we weakened the cluster-medium interaction by setting β = 0 whenever a Ga-As bond

between the third shell and a Ga atom in the top or the bottom layers of the second shell

was involved in the calculation of the second term in Eq. (7.3). The third-shell As atoms
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were allowed to have three-body angular interaction with the cluster only through the 8

InxGa1-x virtual atoms in the middle layer of the third shell. This is necessary in providing

the rigidity against the lateral expansion of the InxGa1-xAs ML.

All the atoms were initially located at their tetragonally coordinated virtual-crystal sites,

which have the same in-plane coordinates as the GaAs substrate. The vertical initial

position of each atomic layer was determined by minimizing the strain energy per InxGa1-x

atom using Eq. (7.3) for an artificially constructed monolayer of InxGa1-x virtual atoms

buried in GaAs(001). The 42 atoms within the cluster were then allowed to move until Eq.

(7.3) reached its minimum [26]. For each composition, six different clusters were

considered to explore all the possible arrangements for In or Ga to occupy the four cation

sites at the center of the clusters. The structural dimensions obtained from the individual

clusters were then averaged according to their population, which was determined by the

Bernoulli distribution for a given x and the degeneracy of each cluster.

Figure 7.4, 5 and 6 show the results of the calculation averaged over the six clusters as

a functions of the In concentration x. In Figure 7.4 we directly related the vertical positions

of the atoms in the InxGa1-xAs layer to the nearest (004) As plane extrapolated from the

substrate. This was accomplished by assuming that the bottom As layer in Figure 7.3 is

aligned with a substrate (004) plane. Figure 7.4(a) shows the calculated In coherent

position P004 in unit of the GaAs (004) d-spacing. The cluster calculation predicts a nearly

linear dependence of P004 on x, which is basically identical to the trend suggested by the

macroscopic theory using Eq. (7.1) and (7.2). In Figure 7.4(a), the calculated curve
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Figure 7.4  The calculated vertical positions with respect to the nearest substrate (004)
As plane for (a) the In atoms and (b) the As atoms right below the InxGa1-x layer. The
measured positions A, B and C in (a) are from the present XSW experiment. The data
point S is the statistically averaged value of the In P004 positions for x = 1.0 in Ref. 9,
10, and 11. The dashed line in the x > 1.0 region in (a) is calculated assuming a full ML
of InAs in the first layer plus a sub-ML of InAs in the second layer. The dashed line in
(b) is the population-weighted average over the two solid lines.
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agrees not only with the present XSW data (A and B) but also with the statistically

averaged In position (1.157 ± 0.01) of three earlier measurements [9 – 11] for x = 1.0 (D).

Figure 7.4(b) shows the (004) positions for the As atoms right below the InxGa1-x

layer that form bonds with an In atom (the lower curve) or a Ga atom (the upper curve).

For those As atoms underneath In, the theory suggests a vertical deviation from their bulk

positions, which can be as large as –5.5% of the GaAs(004) d-spacing at the limit of very

dilute In. This is due to the fact that these As atoms are pushed down by the bigger In

atoms above, which are held by the surrounding lattice. The lower the In concentration, the

more GaAs-like the buried monolayer, and therefore the larger this effect. For x = 1.0, the

entire heterolayer is covered by In, and thus the As at the interface are free vertically to

resume their bulk-like positions [27]. The opposite effect is predicted for the P004 of the

As underneath Ga.

Figure 7.5(a) and (b) show the change in the second nearest neighbor distances along

the [110]  direction (d1) and along the [101] direction (d2), respectively, between the As

atoms right below and above the InxGa1-x layer. The As-In-As case and the As-Ga-As case

were considered separately in each figure. The vertical scale has been normalized to the

corresponding distance for the GaAs substrate ds0 = as0 / 2 = 3.997  Å. At the dilute In

limit, the As-In-As separation is about 5.3% larger than ds0 for both d1 and d2, which is

comparable to the lattice mismatch between InAs and GaAs. The similar As-As distance in

all directions implies that the InAs tetrahedron remains the three-fold symmetry for small

x. As x increases, the lateral compression builds up gradually as a result of increasing

lattice mismatch and hence causes both the As-In-As and As-Ga-As separations
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Figure 7.5  The calculated compositional dependence of the variation of the second
nearest neighbor As-As distance for the As atoms right below and above the InxGa1-x
layer. The solid lines are the average of the As-As distances along the [110]  and [110]
directions (a), and the average over the [011], [101], [011]  and [101]  directions (b). In
each calculation, those As atoms bonding to In and those to Ga in the buried layer are
considered separately. The dashed line in each figure is the population-weighted average
over the two solid lines.
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along the [110]  directions to decrease. The former finally approaches to ds0, as required by

symmetry, and the latter becomes 4.7% smaller than ds0 for x = 1.0 due to the local

expansion of the InAs tetrahedrons surrounding each Ga atom. Meanwhile, the vertical

expansion of the buried layer leads to larger As-In-As and As-Ga-As distances along the

[101] direction towards higher x. Therefore, our calculation renders a split between d1 and

d2 for both the As-In-As and As-Ga-As distances. The same effect has been measured by

polarization-dependent EXAFS of the second-shell distance of Ge for a coherently grown

GeSi layer on Si(001) [28].

Figure 7.6(a) shows the In-As and the Ga-As bond lengths L (solid lines) in the

strained InxGa1-xAs monolayer. For comparison, we also plotted the bulk-alloy bond

lengths calculated for cubic InxGa1-xAs (long-dashed lines). For the strained bond lengths,

our calculation agrees with Woicik’s results [18] for a thick InxGa1-xAs film on

GaAs(001). Both the In-As and Ga-As bond lengths are essentially constant over the range

of 0 ≤ x ≤ 1: the In-As bond stays at about 98% of its natural bond length (LIn-As,0 =

2.623 Å) and the Ga-As bond remains nearly unstrained (LGa-As,0 = 2.448 Å). This

tendency is the main cause of the local lattice distortion around In atoms at lower x (and

around Ga atoms at higher x) suggested in Figure 7.4(b) and 7.5(a). When compared with

the bond lengths in cubic InxGa1-xAs, the In-As and Ga-As bonds in a strained ML are

equally contracted, as observed and explained by Woicik et al. [20, 21] for a 213 Å thick

In0.22Ga0.78As on GaAs(001). The contraction of the In-As bond length at the one ML

limit has been measured by Woicik et al. [9, 11] using EXAFS. They reported an In-As

bond length of 2.57 ± 0.02 Å for x =1.0, in good agreement with the present
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Figure 7.6  The calculated (a) In-As and Ga-As bond lengths L and (b) As-In-As and
As-Ga-As bond angles φ in the InxGa1-xAs ML as functions of the In concentration x
(solid lines). The long-dashed lines in (a) are the In-As and the Ga-As bond lengths for
cubic InxGa1-xAs. The calculation in (b) considers only the bond angle as indicated in
the inset. The dashed line in (a) is the population-weighted average over the two solid
lines.
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calculation. Since the As atoms right below a full ML of In were shown [Figure 7.4(b) and

7.5(a)] to have bulk-like positions, we can also estimate the In-As bond length from the

XSW-measured In height through LIn −As = 0.25as0 P004
2 + 2  for a strained, pure InAs

monolayer. Using the statistically averaged value of the In P004 positions in Ref. 9, 10, and

11 for x = 1.0, the above formula renders a bond length LIn-As  = 2.582 Å, consistent with

the present calculation and the EXAFS findings. At the limit of very dilute In, the In-As and

Ga-As bond lengths in strained and cubic InxGa1-xAs should converge to the same values.

Our calculated bond lengths at this limit are therefore supported by the measurements

reported by Mikkelsen and Boyce [29]. However, our results do not predict the stretched

Ga-As bond length observed by Proietti et al. [30, 31] in their EXAFS measurements of

InGaAs films on GaAs(001).

Figure 7.6(b) shows the As-In-As and As-Ga-As bond angles φ in the heterolayer as

defined in the inset. For the sp3 hybrid orbitals the natural bond angle is φ 0 = 109.47°.

Our calculation indicates that the As-In-As and As-Ga-As bond angles are close to φ 0 for

small x. As x increases, the As-In-As as well as the As-Ga-As bond angles decrease due to

the in-plane stress. The total bond bending is about 8° for both InAs and GaAs

tetrahedrons over the entire compositional range. Notice that this bond angle adjustment is

directly related to the strong x dependence of the As-As distance in Figure 7.5 and the

(004) In position in Figure 7.4(a), but not a result of elongation of In-As or Ga-As bond.

The dashed lines in Figure 7.4(b), 7.5 and 7.6(a) were obtained by averaging in each

figure the two solid lines after they were properly weighted with either the In or the Ga

population in the buried layer. They represent the structural dimensions that would be

predicted by the virtual-crystal model [19], which disregards the distinction between In and
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Ga and treats each atom in the buried layer as a virtual InxGa1-x atom. The dashed lines in

Figure 7.4(b) and 7.5(a) imply that the average position of the As atoms at the bottom of

the GaAs/InxGa1-x interface is already bulk-like. Therefore, macroscopically the regions

beyond the first nearest neighbor of InxGa1-x are essentially unstrained. This justifies our

earlier assumption in defining the boundary of the strained region for applying the

macroscopic elasticity theory to a buried ML.

In contrast to the linearity of the bulk-alloy lattice constants predicted by Vegard's law,

the calculated In height, bond lengths and As-As second nearest neighbor distances (d1 and

d2) exhibit nonlinear behaviors under biaxial stress. This has an origin in the fact that the

perpendicular strain (or the lattice constant c) of a tetragonally distorted film is not a linear

function of the film composition [Eq. (7.1)]. In Fig 6(a), for example, the effect of the

substrate constraint against the film lateral expansion causes the In-As and Ga-As bond

lengths to deviate from following the straight lines for the bulk alloy, and the nonlinear

nature of the vertical expansion of the film leads to the slight bowing of the theoretically

evaluated bond length curves.

Based on our XSW measurements and cluster calculation, we now have a microscopic

description of the effect of strain on a ML-thick film. At very low In concentration, the

stress around each In atom remains isotropic. Thus, the As-In-As bond angle stays close to

its natural value. The incorporation of In atoms causes primarily the four first nearest

neighbor As atoms of each In to be pushed away from their bulk positions. As the In

concentration rises, the InxGa1-x layer begins to form and the stress becomes more lateral.

This increasing biaxial compression bends the As-In-As and As-Ga-As bond angles, but

the more InAs-like environment allows the four nearest neighbor As atoms of each In to
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move back to their tetragonally coordinated virtual-crystal positions. As a result, the buried

layer expands vertically. Over the entire compositional range, the In-As and Ga-As bonds

in the buried layer are equally contracted in such a way that their bond lengths remain

constant. Therefore, our calculation suggests that the bond-length strain in a one-ML

InxGa1-xAs film is accommodated through the combination of (a) the As-In-As and As-

Ga-As bond bending, (b) the equal contraction of In-As and Ga-As bond lengths, and (c)

the local lattice distortion at the GaAs/InxGa1-xAs interfaces. Factors (a) and (c) are also

responsible for the variation of the In height. Factors (a) and (b) are expected to have larger

effect for higher In concentrations, while (c) should become more pronounced near the

dilute In or Ga limit. Since our single-ML calculation and the result in Ref. 18 for a thick

overlayer predict the same compositional dependence for In-As and Ga-As bond lengths,

our above conclusion should also be valid for the case of a thick InxGa1-xAs layer grown

on GaAs(001).

The success of the macroscopic continuum elasticity theory in calculating the position

of one ML of InxGa1-x buried in GaAs(001) can be further appreciated if we consider

applying the same theory to a strained film grown along the [111] direction. The

complication of the (111) case originates from the fact that the four different directions that

the tetrahedral bonds point to in a [111]-oriented film are not all equivalent with respect to

the lateral stress. The bond along the [111] direction is expected to be less strained than the

bonds parallel to the [111] , [111]  and [111]  directions [18]. Therefore, the contraction or

expansion of the lattice may not be uniform in the [111] direction. We are currently

investigating the (111) case and the related issues will be discussed in a separate report.
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In summary, x-ray standing wave measurements were carried out to study the strain in

pseudobinary InxGa1-xAs alloys buried in GaAs(001) at the one monolayer limit. The

measured In positions along the (001) direction were found in good agreement with the

values predicted by macroscopic continuum elasticity theory. A more microscopic

description of the strain effect was obtained by performing a random-cluster calculation

using the Keating valence-force field. With a cluster specially constructed for a buried,

one-ML-thick film, our calculation shows a weak compositional dependence of the In-As

and Ga-As bond lengths. This is similar to the results from an earlier calculation for a thick

InxGa1-xAs film on GaAs(001) [18]. In addition, the calculated As-In-As bond angles and

the positions of the first nearest neighbor As atoms suggest that the strain in the buried

monolayer is accommodated through the combination of the As-In-As and As-Ga-As bond

bending, the equal contraction of the In-As and Ga-As bond lengths, and the local lattice

distortion at the GaAs/InxGa1-x interfaces. The bond bending and the local lattice distortion

are also found to be the cause of the vertical expansion we measured in the strained layers.

7.3  In-plane structures of GaAs(001)/InGaAs probed by off-normal XSW measurements

In addition to the studies of the vertical expansion of buried unit cells, we investigated

the in-plane structures of the heterolayers by performing (111) and (1 11)  XSW

measurements. A Si(111) monochromator was tuned to a photon energy of Eγ = 6.90 keV

for these experiments. Totally 7 samples (labeled A through G) were characterized.

Table 7.2 lists the results of the (004) analysis for sample D through G. The measured

In positions for sample E and G showed good agreement with continuum elasticity theory

and the calibrated In coverages. Table 7.3 summarizes the off-normal
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Table 7.2  XSW results of the (004) measurements on sample D through G (Eγ  = 6.8

keV). All the samples were grown with a 20 Å thick GaAs cap.  

Sample D E F G

InxGa1-xAs Thickness (ML) 0 1 1 2

x 0 0.41 0.7 0.41

Measured In Coverage (ML) 0.5 0.9

P004 calculated 1.071 1.133

P004 measured (±0.02) 1.07 1.12

f004 measured (±0.03) 0.66 0.61

Table 7.3  Results of the off-normal XSW measurements (Eγ  = 6.9 keV).

Sample A B C E G
ML 1 1 1 2 2
x 1 0.41 0.41 0.41

H φ f±
0.02

P ±
0.02

f P f P f P f P

(111) 0° 0.64 0.98 0.57 0.94 0.61 0.993 0.51 0.926 0.54 0.973

(1 1 1) 180° 0.61 0.992 0.47 0.921 0.58 0.978

(1 11) 90° 0.89 0.99 0.96 0.99 0.85 0.998 0.86 0.973 0.86 0.990

(1 1 1) 270° 0.92 1.009 0.88 0.968 0.94 0.998
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Figure 7.7  The (111) (top) and ( 1 11) (bottom) XSW data and the best fits (solid lines)
for the normalized In L fluorescence yields and reflectivity (R) versus the incident angle
(θ) for samples A and B.
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measurements for all the samples, where the coherent positions P{111} have their origins at

the substrate Ga lattice position. In Figure 7.7 we showed the typical (111) and (1 11)

angular dependences of the In yields measured from our samples. Notice that the GaAs

{111} bilayer polarity is inverted as we switch between the [111] and [ 1 11] reflections

(Figure 7.8). This leads to the dissimilarity in the modulation of the In yield exhibited in

Figure 7.7.

By projecting the In position onto the [111] and the [ 1 11] axes, P111 and P1 11 can be

geometrically related to P004 by P111 = P1 11= P004 +3( ) / 4 , which is similar to the

expressions we used in Chapter 5 and 6. This equation assumes that the 2-fold symmetry

about the [001] axis is not broken by the formation of the InxGa1-xAs layer. Based on the

XSW (004) results, this symmetry requirement predicts P{111} to be slightly greater than

unity for all the samples. Our measured In {111} coherent positions showed a reasonable

agreement with the prediction (see Table 7.3). This consistency confirms that the

distributions of the In atoms are symmetrically centered about a 2-fold symmetry axis

perpendicular to the (004) plane.

For a pseudomorphically grown InxGa1-xAs buried layer, as depicted in Figure 7.8,

the In has only one Δd/d position with respect to the {111} planes. Therefore, the

geometrical factor is a111 = a1 11 = 1 and a four-fold symmetry is expected in terms of the

present XSW measurements. The coherent fractions f111 and f1 11 should be equal to the

product of the RT GaAs(111) Debye-Waller factor D111 = 0.97 and the order fraction C.

Based on the (004) coherent fractions, we estimated that each sample should have the same

f111 and f1 11 and the values should be between 0.7 and 0.9 for all the samples. However,

our analysis (Table 7.3) showed that all the f1 11 's were measured close to 0.9,
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Figure 7.8  (a) [1 1 0] and (b) [110] projected side views of a pseudomorphically grown
1 ML InxGa1-xAs buried heterostructure. The solid lines represent the (004) diffraction
planes and the {(111)} Ga planes of the GaAs substrate, and the dashed lines indicate
the In/Ga position in the buried film and the As/Ga positions in the cap.
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while all the f111's were close to 0.6. Similar results were obtained from the ( 1 1 1) and

(1 1 1) measurements on sample C, E, and G (Table 7.3). Since the (111) and ( 1 11)

reflections measured the [110] and [ 1 10] components of the in-plane atom distribution

(Figure 7.8), this clear discrepancy between the measured f111 and f1 11 indicated an

anisotropic lateral In distribution along the two orthogonal directions. In other words, the

In atoms, as translated back into a substrate 1x1 unit cell, were sharply confined to a

symmetric position along the [ 1 10] direction, but has a wider spread along the [110]

direction.

We attempted to investigate more on this anisotropic In distribution by performing x-

ray diffraction on the same samples. The diffraction experiments were carried out at

beamline X6B at the NSLS. We first searched for the possible superstructures that may

contribute to the asymmetry observed by XSW, but no fractional order reflection was

found on any of the samples. We then collected the diffraction intensities along the bulk

GaAs 00L, 11L and 1 1L  rods. Figure 7.9 shows the results of these crystal truncation rod

(CTR) scans [32]. It is evident that the distortion of the intensity curve near the strong bulk

reflections becomes more pronounced as the total In content in the buried layer increases.

This so-called Pendellösung fringes are due to the interference between the  diffracted

beams from the substrate and from the 20 Å thick displaced cap. However, the measured

11L and 1 1L  rods are nearly identical and thus reveal no structural anisotropy of these

films.    

Anisotropy has been reported in previous studies of the initial growth stage and the

optical properties [33] of lattice-mismatched III-V heteroepitaxial structures. Using

scanning tunneling microscopy (STM), Bressler-Hill et al. [42] observed that growing a

submonolayer of InAs on a vicinal GaAs(001) surface formed two-dimensional (2D)



198

Figure 7.9  00L (top, solid lines), 11L (bottom, solid lines) and 1 1L  (bottom, dots) rod
scans at 8.00 keV for samples C through G.
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islands elongated in the [ 1 10] direction. Similar anisotropic morphology has also been

observed during the homoepitaxy of GaAs on GaAs(001) [34]. This asymmetric 2D

growth is believed to be a result of anisotropic Ga (or In) surface diffusion rates [35] and

step edge reactivities [34] along the [ 1 10] and the [110] directions. Based on these

observations, one possible explanation for our off-normal XSW result would be that

during the InxGa1-xAs monolayer growth, 2D InxGa1-xAs islands (or steps) were formed

and then embedded in the GaAs matrix of the cap. Through a lateral elastic deformation of

the step edges toward the GaAs matrix, the biaxial strain experienced by the InxGa1-xAs

islands can be reduced. This is similar to the observation reported by Massies and

Grandjean based on their RHEED study of the growth of InxGa1-xAs on GaAs(001) [36].

Thus, the In atoms near an step edge parallel to the [ 1 10] (or [110]) axis will have non-

ideal in-plane positions along the [110] (or [ 1 10]) direction. If the InxGa1-xAs islands

were on average much narrower in the [110] direction, and the step density was higher for

the steps parallel to the [ 1 10] [34], a lower coherent fraction can be therefore expected for

the [111] XSW measurement. Based on the present study alone, we were not able to

quantitatively determine the origin of this anisotropic broadening of the In distribution. It

was also not clear how the vertical distortion of the InxGa1-xAs lattice was affected by the

lateral anisotropy we observed. Further investigations would be necessary to answer these

questions.

7.4  Strain-induced cap displacement: An x-ray evanescent-wave emission measurement

Another way to measure the strain in a buried film is to consider the displacement of

the cap layer in the growth direction with respect to the ideal lattice of the substrate. A

MBE-grown sample with 1 ML of InAs on GaAs(001) capped by a GaAs layer of 25 Å
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was prepared at the National Institute of Standards and Technology [10]. In this section we

demonstrate that by combining the conventional XSW method and the evanescent-wave-

emission effect (see Section 2.4) one can precisely measure the strain-induced cap

displacement and examine its homepitaxy, even the cap layer thickness tc was only 25 Å.

Studying the structural variation in the near-surface region with the XSW method

requires an effective way for isolating surface signals from bulk signals. This would

typically be accomplished by using photoelectron emission [37]. The conventional

fluorescence-based XSW technique, due to its lack of surface sensitivity, presumably

would not be considered as an appropriate tool for this kind of measurement. However, one

can effectively reduce the depth probed by fluorescence by employing the evanescent-

wave-emission effect discussed earlier.

Table 7.4 Result of the (004) XSW measurements and calculated escape depths Z2 at αu

= 2°, 3°, 4° and 10°. The coherent fractions f and coherent positions P are determined by

χ2 fits of Eq.(2.72) to the data with L(θ) defined by Eq.(9) for As and with L(θ) = 1 for In.

αu 10° 4° 3° 2°
Z2 [Å] 900 330 230 120

As f 0.81±0.01 0.70±0.01 0.65±0.01 0.48±0.03
P 1.00±0.01 1.01±0.01 1.024±0.01 1.062±0.01

In f 0.43±0.03 0.44±0.02 0.42±0.02 0.43±0.02
P 1.154±0.01 1.151±0.01 1.159±0.01 1.156±0.01

The low-takeoff angle XSW experiments were carried out at αu = 4°, 3° and 2°, where

αu was the upper limit of the fluorescence takeoff angle defined by the fluorescence slit.
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Figure 7.10 shows the As Lα fluorescence yields measured at αu = 10° and 2°. The

coherent fractions and coherent positions for arsenic and indium measured at various

takeoff angles are tabulated in Table 7.4.

As evident in Figure 7.10, as αu approaches the critical angle αc = 1.5°, the

fluorescence modulation amplitude gradually decreases and the yield maximum is shifted

toward the low angle side of the rocking curve. This corresponds to a decrease in the

coherent fraction and an increase in the coherent position. This change is due to the

significant reduction of the As Lα escape depth near the critical angle which makes the As

Lα signal more sensitive to the cap and less sensitive to the bulk GaAs. In the extreme

case, where αu = 2° and the maximum escape depth is about 120 Å, over 30% of the As

yield is contributed by the cap. The coherent fraction (fc) and coherent position (Pc) for the

arsenic in the cap can therefore be determined quantitatively by fitting the following

modified yield equation to the fluorescence data:

Y(θ) = YOB 1 + R(θ) + 2 R(θ) ⋅[fs cos(υ(θ) − 2πPs)
Ls
L

 
 
 

+fc cos(υ(θ) − 2πPc )(1 −
Ls
L
)] 
 
 
L .

(7.4)

The constant L is the effective thickness defined by Eq.(2.79) with α1 = 0 and with µz,1(θ)

omitted (since µz,1(θ )  << µz,2(α )  when α is near α c). The constant Ls has the same
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Figure 7.10  The experimental XSW data and the best fits for the normalized As L
fluorescence yields at αu = 2° and 10° and the GaAs(004) reflectivity (R) versus the
incident angle (θ). The sample was a ML of InAs grown on a GaAs(001) substrate and
capped with 25 Å of GaAs.   
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definition as L except that the integration over depth starts at z = tc rather than z = 0. This

accounts for the arsenic yield contributed by the substrate below the cap.

In Eq.(7.4) fc and Pc are the substrate arsenic coherent fraction and coherent position.

These values were determined to be fc = 0.81 ± 0.01 and Pc = 1.00 ± 0.01 by the (004)

XSW measurement at αu = 10°. In this case the escape depth is significantly larger than the

cap thickness tc and thus the cap contribution is negligible. The reasonably high coherent

fraction (in comparison with the 0.86 GaAs(004) Debye-Waller factor) and the ideal bulk

coherent position for arsenic at αu = 10° indicate a highly ordered GaAs buffer layer where

94% of the arsenic atoms register with the bulk GaAs(004) planes.

The χ2 fit of Eq.(7.4) to the αu = 2° data with fixed parameters αu, tc, fc and Pc gives fc

= 0.64 ± 0.12 and Pc = 0.33 ± 0.03, corresponding to a 0.47 ± 0.04 Å displacement of the

cap layer (hc) in the growth direction with respect to the bulk (004) planes. This result is in

good agreement with our measured indium (004) position, which predicts hc = 2hIn =

2aGaAsP004,In = 0.44 Å, as depicted by the ball and stick model in Figure 7.8. This

consistency between our measurements of the cap displacement and the In position have an

important implication with respect to characterizing the overall strain of a buried film which

is thicker than 1 ML. In such a case, the multiple positions of the impurity atoms in the

strained layer will reduce the coherent fraction and thus obscure the structural information

gained from the coherent position of the impurity. However, by measuring the position of

the cap layer with XSW, one can obtain the cumulative lattice displacement within the

strained layer.     

For samples with a thicker (100 ~ 200 Å) cap layer, it is possible to essentially

eliminate the substrate signal at αu ~ αc and directly measure the positions of the atoms in

the cap. Since µz,1(θ) << µz,2(α) in Eq.(2.79) and only one coherent position needs to be

considered in Eq.(7.4), Eq.(2.73) with L(θ) = 1 becomes a proper formula for describing
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the fluorescence yield in this case, which implies that atoms distributed within the depth of

a few hundred angstroms can be treated as if they were on the surface. Consequently, the

uncertainties about the cap layer thickness tc and the upper limit of the emission takeoff

angle αu can be completely removed from the data interpretation. With these advantages

realized, the XSW method can be applied as a highly precise nondestructive probe for

studying buried heteroepitaxial structures as well as interfacial segregation.

7.5  Strains in InSb(111)/InAsSb

As mentioned earlier at the end of Section , the tetrahedrons in a [111] and [001]

oriented semiconductor thin films are expected to respond differently to the substrate-

imposed lateral stress due to the different bonding orientations with respect to the growth

directions. We therefore carried out high-resolution characterizations of heterostructures

composed of ML thick InAsSb films buried in InSb (111) substrates using XSW and

EXAFS. In this section we present the experimental results and compare them with

continuum elasticity theory and calculations using Keating potential.

The samples (W1 and W2) were grown by metal-organic vapor phase epitaxy

(MOVPE) as a single monolayer of InAsxSb1-x buried in a InSb(111) matrix. The cap

thickness was about 25 Å. The As coverage in the buried monolayers was determined by x-

ray fluorescence analysis to be 0.23 ML and 0.95 ML for W1 and W2, respectively, using

a RBS calibrated As implanted Si standard. Both the XSW and EXAFS measurements

were conducted using the 5ID-C undulator station at the DND CAT at the Advanced

Photon Source. For the XSW measurements, the APS undulator and the DND liquid N2

cooled Si(111) monochromator were tuned to an x-ray energy of 12.8 keV to excite the As

K fluorescence (no Si channel cut was used). The InSb(111) reflection was employed to

directly measure the heights of the As atoms. The InSb(022) reflection of each sample was
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also recorded to confirm the pseudomorphic growths of the buried layers. The XSW data

were collected using totally two synchrotron runs, which were separated by 14 months.

During the second run the XSW measurements were repeated prior to the EXAFS

experiment. Figure 7.11 and 7.12 show the XSW data and the results of the analysis using

(2.72). The number “-1” and “-2” in the labels denote the first and second synchrotron

runs during which the data were measured. The coherent fractions and coherent positions

determined by the best fits are summarized in Table 7.5.

The As K EXAFS measurements were carried out to directly determine the In-As bond

lengths of the buried layers. Since a strain induced bond length split between the bonds

along the [111] direction and the bonds parallel to the [111] , [111]  and [111]  directions was

expected, each sample was measured at two different geometries: the sample surface

parallel (in plane) and perpendicular (out of plane) to the polarization of the incident x-ray

(Figure 7.13). Since the cross section of photoelectric effect has an angular dependence

and is proportional to ˆ e ⋅ ˆ r j( )2
, where ˆ e  is the polarization vector of the incident x-ray and

ˆ r j  in the present case is the unit vector pointing from the emitting atom to its jth first-shell

atom, the in-plane geometry has made the In-As bonds parallel to the [111] direction

completely invisible to the EXAFS measurement. While for the out-of-plane geometry

75% of the EXAFS signals were contributed by the In-As bonds parallel to the [111]

direction and 25% by those parallel to the [111] , [111]  and [111]  directions. The x-ray

optics used for the EXAFS experiment was the same as the XSW measurements. The
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Figure 7.11  The experimental XSW data and the best fits for the normalized As Kα
fluorescence yields and the InSb(111) reflectivity (R) versus the incident angle (θ) for
samples W1 and W2. The labels “-1” and “-2” denote the first and second
synchrotron runs during which the data were measured.
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Figure 7.12  The experimental XSW data and the best fits for the normalized As Kα
fluorescence yields and the InSb(022) reflectivity (R) versus the incident angle (θ) for
samples W1 and W2. The labels “-1” and “-2” denote the first and second
synchrotron runs during which the data were measured.
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energy scans were achieved by scanning simultaneously both the undulator gap and

Si(111) monochromator. The As K fluorescence x-ray from the samples were recorded by

a solid state detector. The samples were kept spinning at a few hundred rpm to smear out

the glitches and spikes in the EXAFS spectra due to Bragg reflections. The incident angles

were about 10° for the in-plane geometry and 0.5° for the out-of-plane geometry. An InAs

powder sample was measured as the EXAFS standard using a transmission mode. The

incident and the transmitted intensities were recorded by a pair of ion chambers about 8 ”

apart filled with He. The measured absorption coefficients µ(E) for the InAs standard and

sample W2 at the in-plane and out-of-plane geometries were plotted in Figure 7.14. The

EXAFS measurement of sample W1 did not yield data with enough statistics due to the

lower As concentration, small sample size and limited beam time.

Table 7.5  XSW results of the (111) and (022) As K measurements (Eγ = 12.8 keV). The
"P111 theory" was based on the non-cluster Keating calculation (Figure 7.18).

Sample x(As)
(±5%)

ε⊥
theory

H f
(±0.01)

P*

(±0.01)
P111

*

theory
P022

cal.* * 

W1 0.23 -1.0% (111)-1 0.85 0.71 0.74
(111)-2 0.65 0.70
(022)-1 0.62 0.95 0.94
(022)-2 0.41 0.95

W2 0.95 -3.8% (111)-1 0.41 0.62 0.716
(111)-2 0.39 0.64
(022)-2 0.29 0.90 0.84

* P111 is the position with respect to an In (111) plane.
* * Based on measured P111 and symmetry.
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Figure 7.14  EXAFS measured absorption coefficients µ(E) for the InAs standard and
for sample W2-2  at the in-plane and out-of-plane geometries.

Figure 7.13  The in-plane and out-of-plane geometries for the polarization-dependent
EXAFS measurements.



210

The XSW characterizations (see Table 7.5) along the growth direction suggests that a

high quality InAsSb buried layer can be grown at low As concentrations. This is based on

the high (111) coherent fraction (0.85) measured on sample A. Since the (111) coherent

position for the bulk Sb atoms is 0.75 with respect to the In planes, the measured As P111’ s

for sample W1 (0.71) and W2 (0.63) indicate that the As vertical positions has been

strongly affected by the lateral tensions imposed by the substrates. Based on the symmetry

of the zinc-blende structure, P022 can be related to P111 by P022 = 4P111/3 [Figure 7.15].

Table 7.5 shows that this relationship was perfectly satisfied by sample W1 but not by

sample W2. Furthermore, the ratio f022/f111 = (D022/D111)(a022/a111) [see Eq. (5.3)] was

measured to be approximately 0.7 for both samples, while an ideal pseudomorphic model

(a022 = a111 = 1), as the one depicted in Figure 7.15, would predict f022/f111 = D022/D111 ≈

0.9 [38]. This could imply that a static Debye-Waller factor needs to be considered to

account for the local structural disorder of the buried layers. Also notice that the second

measurements on sample W1 showed significant reductions in the coherent fractions,

indicating a degradation of the film over the 14-month period.

The EXAFS data were analyzed following the standard EXAFS procedures [39]. Figure

7.16 (a) shows the As K EXAFS, χ(k), after background removed by fitting of splines to

the raw data in Figure 7.14 between (E0 + 12) eV to (E0 + 600) eV, where E0 is the energy

of the absorption edge, 
  
k = 2m hω − E0( ) /h  is the photoelectron wave number, and

  E γ = hω  is the incident photon energy. Figure 7.16(b) shows the magnitudes of the

Fourier transform of the k-weighted EXAFS, kχ(k), between k = 2 Å-1 and 12.2 Å-1. The

peaks between r = 1.5 Å and 3.2 Å correspond to the first-nearest neighbor distances for

the As atoms, i.e., the In-As bond lengths. It is already evident in Figure 7.16(b) that the In-

As bond lengths in the buried layer are about 0.04 Å longer than
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Figure 7.15  The [01-1] view of an InSb(111)/1 ML InAsSb/InSb heterostructure. The
solid lines represent the (111) In planes and the (022) planes. The dashed lines indicate
the (111) and (022) positions for the As/Sb atoms in the buried layer.



212

that of the InAs standard. This is consistent with what is expected for a film under tension.

However, no bond length split can be concluded without further analysis. The curves in

Figure 7.16(b) between r = 1.5 Å and 3.2 Å were then back transformed to the k space.

These Fourier-filtered first-shell contributions are compared with the kχ(k) functions in

Figure 7.17(a). Finally, the Fourier-filtered first-shell data for the buried layer were fitted

by the following function assuming a single bond length [Figure 7.17(b)]

χ k( ) = Nf k( ) sin 2kr0 + φ k( )[ ] , (7.5)

where f(k) is the backscattering amplitude, φ(k) is the total first-shell phase shift, N is the

coordination number for the first shell and r0 is the averaged In-As bond length. The

functions f(k) and φ(k) were extracted from the InAs standard data with bulk In-As bond

length r0 = 2.623 Å and N = 4. Only two free parameters, N and r0, in (7.5) were used in

fitting the data for the buried layer. For the in-plane measurement N and r0 were

determined to be 3.24 and 2.661 ± 0.009 Å, and for the out-of-plane measurement they

were determined to be 3.88 and 2.655 ± 0.008 Å, respectively. The error bars of r0 can be

further reduced if we model the in-plane data using the out-of-plane data. This rendered a

difference r0,IP - r0,OP = 0.006 ± 0.006 Å and a ratio NIP/NOP = 0.83. Since the out-of-plane

EXAFS measured an average of the two different In-As bond lengths, the true bond length

of the In-As bonds along the [111] direction are expected to be slightly shorter than 2.655

Å. This leads to a slightly larger bond length split.   

We now compare the XSW measurements with continuum elasticity theory. Based on

the theory, for a cubic material grown pseudomorphically along the [111] direction, the
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Figure 7.16  (a) The As K EXAFS χ(k) and (b) the magnitudes of the Fourier
transform of the k-weighted EXAFS, kχ(k), between k = 2 Å-1 and 12.2 Å-1 for the InAs
standard and for the in-plane and out-of-plane measurements of sample W2-2.
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Figure 7.17  (a) Comparisons of the Fourier-filtered first-shell contributions with  kχ(k)
and (b) the best fits to the Fourier-filtered first-shell data for the in-plane and out-of-
plane measurements of sample W2-2.
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vertical strain ε⊥  in the film can be related to the in-plane strain ε ||  imposed by the

substrate as (Appendix A)

ε⊥ = −
2C11 + 4C12 − 4C44

C11 + 2C12 + 4C44
ε || ,  (7.6)

where Cij are the bulk elastic constants of the film [5]. The in-plane strain ε ||  can be

estimated by the expression ε || = (as0 − af 0 )/ af0 . For a pure InAs layer on the InSb(111),

it renders a strain ε ||  = 7.0% based on the bulk lattice constants aInAs = 6.0584 Å and aInSb =

6.4794 Å. Therefore Eq. (7.6) predicts a vertical strain ε⊥  of –4.0%. For one ML of InAs

buried in InSb(111) we can convert this vertical strain to the average (111) coherent

position for the As atoms in the film assuming (a) the In atoms at the lower InAs/InSb

interface stay at their bulk-like positions and (b) the InAs tetrahedrons in the film deform

uniformly in the [111] direction. This leads to the following expression (Figure 7.15)

P111 =
3(1 + ε⊥ )af0

4as 0
,  (7.7)

where af0 and as0 are the bulk lattice constants of the film and substrate, respectively. Eq.

(7.7) predicts P111 = 0.67 for InAs. For one ML of InAsxSb1-x alloy buried in InSb(111),

we can carried out a similar calculation by combining Eq. (7.6) and (7.7) with Vegard’s

law. We plot out P111 for the arsenic as a function of the composition x (the lower dotted

line) in Figure 7.18(a). The upper dotted line in Figure 7.18(a) is the (111) position for the

In atoms at the upper InAsSb/InSb interface, which should follow P111 = (1+ε⊥ )af0/as0 and

approach to one at the dilute As limit.
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Figure 7.18  (a) Comparison between the P111 calculated based on continuum elasticity
theory (dots) and the non-cluster Keating calculation (solid lines) for the As in the
buried monolayer and the In at the lower InAsSb/InSb interface. Also shown in (a) are
the XSW measured P111 for W1 and W2. (b) The in-plane and out-of-plane population-
weighted average In-AsxSb1-x bond lengths based on the non-cluster Keating calculation.
Also shown are the EXAFS measured In-As bond lengths for sample W2.

W1

W2
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We next apply Keating potential to calculate the structure for the same system. This

approach allowed us to remove the assumptions of fixed interface position and uniform

vertical deformation [see (7.7)]. In the first step we constructed a model containing a ML

of InAsxSb1-x sandwiched between two InSb layers. We replaced the anions in the buried

layer with the same AsxSb1-x virtual atoms, which had the average properties of As and Sb.

This simplified model did not consider the As and Sb atoms in the buried layer separately,

i.e., it can be used to calculate only the average (111) positions and bond lengths, but it

provided simple calculations without statistical consideration for the As and Sb

distributions in the film. We determined the positions of the atoms by minimizing the

Keating energy per AsxSb1-x virtual atom based on (7.3). By symmetry all the atoms were

allowed to move only in the [111] direction. In Figure 7.18(a) we plotted the results of this

calculation as solid lines for the In atoms at the upper InAsSb/InSb interface and for the

AsxSb1-x virtual atoms in the buried layer. For the In (111) position, the present Keating

calculation showed excellent agreement with continuum elasticity theory [40]. While it

indicated that the average anion vertical position in the film was less affected by the lateral

tension, as compared to the continuum elasticity theory. This implies that the uniform

vertical deformation of the InAsSb tetrahedrons in a [111]-oriented buried layer may not be

a valid assumption. The small reduction of the anion height in the buried layer as x

increases is also consistent with the expectation that the In-As bonds parallel to the [111]

direction are less strained than those along the other three directions. However, our XSW

measured As (111) positions [Figure 7.18(a)] did not follow either of the theoretical trends

and showed a much large effect of the lateral strain.

To estimate the bond lengths in the strained InAsxSb1-x(111) monolayer, we performed

a random cluster calculation using the Keating potential (7.3). The cluster and the

boundary conditions used in this calculation [Figure 7.19(a)] were similar to the one in
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Figure 7.19 (a) The InAsjSb4-j cluster with the medium atoms used for the present
random-cluster calculation. (b) Calculated In-As and In-Sb bond lengths in a strained
InAsxSb1-x layer (solid lines) and unstrained bulk InAsxSb1-x (dashed lines). Also shown
are the EXAFS measured In-As bond lengths for sample W2.
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Ref. 18 for a thick (111) film. A cluster with a buried (111) monolayer, perhaps similar to

the one introduced in Section 7.2, would be more desirable but will not be considered in

this work. Figure 7.19(b) shows the results of the present cluster calculation. The in-plane

and out-of-plane In-As and In-Sb bond lengths (solid lines) in the strained layer were

calculated as functions of the As concentration x. Also shown for comparison were the In-

As and In-Sb bond lengths in bulk InAsxSb1-x (dashed lines). The cluster calculation

predicted a bond length split, which can be as large as 0.05 Å for x = 1, between the in-

plane and out-of-plane In-As bonds. The out-of-plane bonds were shown to be less

strained and elongate by only a small amount from their natural lengths. In Figure 7.18(b)

we have already estimated the average in-plane and out-of-plane bond lengths based on the

non-cluster Keating calculation discussed earlier. Interestingly, it suggested an even larger

bond length split (0.09 Å) at x = 1 [41]. Our polarization-dependent EXAFS

measurements showed, however, a very small (< 0.01 Å) bond length difference, and the

two In-As bond lengths were both measured to be close to the calculated bond lengths for

the out-of-plane In-As bond. Notice that if we assume that the In atoms at the lower

InAsSb/InSb interface are bulk-like [40], the XSW measured As P111 for sample W2

implies an out-of-plane In-As bond length to be L = P111aInSb / 3 ≈ 2.36 Å , which is too

short to be physical and is inconsistent with the EXAFS data and the calculations.

In summary, we have investigated the strain in one ML of InAsxSb1-x buried in

InSb(111) using XSW, EXAFS and theoretical calculations. The measured As (111)

positions in the films showed a strain effect much larger than what was suggested by

continuum elasticity theory. While the EXAFS measurements detected no significant bond

length split between the in-plane and out-of-plane In-As bonds, which was predicted by a

random cluster calculation using Keating valence force field to be as large as 0.05 Å for x

= 1. We speculate that the buried layers, particularly the one with the higher As
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concentration, were partially relaxed and therefore effects other than elastic stain needed to

be considered to properly interpret our experimental observations.



Chapter 8 Summary

In the current studies we explore the surface structures of GaAs(001) induced by the

adsorption of Sb and In using the XSW technique. The GaAs(001):Sb-(2× 4) surface

prepared by MBE was studied by (004), (022) and (111) x-ray standing waves. All three

XSW measurements are consistent with the formation of symmetric Sb dimers above the

modified bridge site. The Sb dimer height was determined to be h’ = 1.72 ± 0.02 Å

above the bulk-like (004) Ga atomic plane. The Sb dimer bond length was measured to

be L =  2.84 ± 0.05 Å. Both values are in good agreement with previous theoretical

calculations and other related measurements. The Sb coverage of the (2× 4)

reconstruction was determined by Rutherford backscattering to be 0.48 ML, consistent

with surface models having two Sb dimers per (2× 4) unit cell, and disagreeing with

models (δ1, β23 and β3) having one and three Sb dimers per unit cell. Finally, the (111)

measurement showed no lateral shift of the Sb dimers in the [110] direction. Our

analysis strongly favors the (2× 4) model with one As dimer in the third layer (the β22

model) over the α2 and δ2 models.

For the investigation of the In-induced GaAs(001) (4×2)/c(8×2) reconstruction,

indium was deposited at room temperature onto the GaAs(001) (2×4) surface prepared

by thermally desorbing an As protective layer. A sharp (4×2)/c(8×2) LEED pattern was

observed after the substrates were annealed at 480°C. Further annealing at ≥ 500 °C

resulted in complete desorption of the In adatoms. The XSW analysis on the surfaces

221
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terminated with 0.2 – 0.3 ML of In annealed at 480 °C showed clear disagreement with

the previous model proposed by Resch-Esser et al., which was based on the structure

widely accepted for the GaAs(001) Ga-rich (4×2) reconstruction. It predicted the

formation of two In-In dimers per (4×2) unit cell in the first layer over the modified

bridge sites. Surprisingly, we found that the In adatoms were located above the hollow

sites, and the formation of In-In dimers was unlikely. Based on our findings and the

previous STM studies we proposed a new (4×2)/c(8×2) model for this surface. It is

characterized by In monomers lining up at the hollow sites above As dimer rows with

the trench areas between the In rows terminated with Ga dimers in the third layer. Each

c(8×2) unit cell contains four In monomers, leading to a coverage of 0.25 ML. The ×2

symmetry is due to the Ga dimerization in the [110] direction. The 8× symmetry is due

to the 16 Å separation in the [1 10]  direction between the In rows as well as the 180°

phase shift of the Ga-dimer positions along the [110] direction between the adjacent

rows. This model agrees qualitatively with the present XSW results and is able to

explain most features observed by STM. However, quantitatively the agreement between

the model and the XSW measurements is unsatisfactory. This suggests that the real

structure of the surface may be more complicated. Further modification of this model is

expected in the future upon the availability of new experimental evidences.

Furthermore, we applied XSW to characterize the strain in one ML of pseudobinary

semiconductor alloys buried in (001) and (111) substrates. For the (001) direction

InxGa1-xAs monolayers were grown on GaAs(001) by molecular beam epitaxy. The
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measured In position along the [001] direction exhibited a nearly linear dependence on

the In concentration x, thus supporting the validity of macroscopic continuum elasticity

theory at the one ML limit. A random-cluster calculation using the Keating valence force

field was performed to explain microscopically the origin of the vertical expansion of the

strained ML observed by the experiment. The calculated As-In-As bond angle and the

positions of the first nearest neighbor As atoms of In suggest that the nearly linear

dependence of the In height on the alloy composition is a combined result of the As-In-

As bond bending and the local lattice distortion at the GaAs/InxGa1-xAs interface. The

calculated In-As and Ga-As bond lengths were found to depend weakly on the In

concentration, consistent with an earlier calculation for the case of a thick InxGa1-xAs

film on GaAs(001) and the available EXAFS data. In addition, we applied the

evanescent-wave-emission effect to directly measure the vertical displacement of the

GaAs cap induced by the strain in a buried InAs layer. The measured cap displacement

showed good agreement with the In position and continuum elasticity theory.

Nevertheless, our off-normal {111} XSW measurements revealed an unexpected

anisotropic In distribution in the buried layers. For the (111)-oriented strained layers,

InSb(111)/ 1 ML InAsxSb1-x heterostructures were measured by XSW and EXAFS. The

XSW measured As (111) positions in the films showed a strain effect much larger than

what was suggested by continuum elasticity theory. However, the EXAFS measurements

detected no significant bond length split between the in-plane and out-of-plane In-As
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bonds, which was predicted by a random cluster calculation using Keating valence force

field to be as large as 0.05 Å for x = 1.

In addition, we describe the theoretical background for calculating the total internal

x-ray field near a Bragg reflection of a thin film based on the Takagi-Taupin dynamical

theory. This leads to the possibility of using the standing waves generated by a thin film

as a structural prob. We tested our theory by studying the polarization states of a PbTiO3

thin film grown on a SrTiO3(001) structure. It was found that the 400 Å as-grown

PbTiO3 film was in a single up polarization state
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Appendix A   Strains in Pseudomorphic Heterolayers of Cubic Materials

Based on Hook's law, the relationship between the stress (σ) and strain (ε) in a solid

can be described by

σij = Cijklεkl  i, j, k, and l = 1, 2, or 3, (A.1)

where the fourth-rank tensor Cijkl contains the 81 stiffness constants (or elastic constants)

of the solid. σ and ε are both second-rank tensors with their first index representing the

directions of the stress and strain fields and their second index the normal directions of

the surfaces that the fields are applied to, as illustrated in Figure. Due to symmetry of

Cijkl Eq. (A.1) can be simplified into a matrix form [1]

σi = Cijεj i and j = 1, 2, …, 6. (A.2)

x1
x2

x3

σ22

σ32

σ12

Figure A.1  The stress tensor notation.
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In this matrix notation the single index 1 through 6 denote 11, 22, 33, 23/32, 31/13 and

12/21 in the original tensor notation. It can be shown that for cubic materials with the

coordinate system x1, x2 and x3 chosen to be along a, b and c of the unit cell, most of the

elements of the matrix Cij vanish and C11 = C22 = C33, C12 = C13 = C23 and C44 = C55 = C66,

σ1
σ2
σ3
σ4
σ5
σ6

 

 

 
 
 
 
 

 

 

 
 
 
 
 

=

C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C44

 

 

 
 
 
 
 

 

 

 
 
 
 
 

ε1
ε2
ε3
ε4
ε5
ε6

 

 

 
 
 
 
 

 

 

 
 
 
 
 

 . (A.3)

This leads to

σ3 = C12(ε1 + ε2 ) + C11ε3  . (A.4)

For a heterostructure pseudomorphically grown along the c axis, the film is constrained

to have the same in-plane lattice parameters as the substrate, while it is free to relax in

the growth direction, i.e.,

σ3 = 0 and ε1 = ε2 = ε ||  . (A.5)

(A.4) and (A.5) suggest that

ε⊥ = ε3 = −2
C12
C11

ε ||  . (A.6)
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To apply (A.2) to a strained film grown along the (111) direction, we need to

redefine the coordinate system so x3' is parallel to the (111). This can be achieved by

applying the transformation matrix

aij =
1
6

cosθ− 3 sinθ cosθ + 3 sinθ −2 cosθ
− sinθ − 3 cosθ − sinθ + 3 cosθ 2sinθ

2 2 2

 

 

 
 

 

 

 
 

(A.7)

which transforms an old coordinate rj to its new coordinate ri' through ri' = aijrj. The

angle θ is an azimuthal angle about the (111) direction which defines the directions of x1'

and x2'. It will be shown that how to choose θ does not affect the formula we are deriving

here. The transformation (A.7) can be applied only to the tensor notation [1] using

Cijkl'= aimajna kpalqCmnpq , (A.8)

i.e., σ ij' = a ima jnakpalqCmnpqεkl' (A.9)

where Cijkl' is stiffness tensor under the new coordinate system. After converting Eq.

(A.9) to the matrix notation, it can be shown that

σ' 3=
1
3
(c11 + 2c12 − 2c44)ε' 1+(c11 + 2c12 − 2c44 )ε' 2 +(c11 + 2c12 + 4c44)ε' 3[ ] . (A.10)
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The same pseudomorphic growth condition as (A.5) therefore requires

ε⊥ = −
2C11 + 4C12 − 4C44
C11 + 2C12 + 4C44

 

 
  

 
 ε || (A.11)

for (111)-oriented heterolayers.


