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ABSTRACT: The photocatalyst β-TaON is of interest due to promising
properties, such as stability, suitable band gap for visible light, and carrier
mobility. We implemented a combinatorial, material discovery approach that
used pulsed laser deposition (PLD) for thin-film growth, X-ray diffraction
(XRD) for phase determination, and machine learning for data reduction. A
lateral compositional gradient of TaOxNy was grown across the surface of an
α-Al2O3 (012) wafer. After annealing, XRD scattering patterns were collected
across the lateral gradient. Unsupervised machine learning separated the XRD
data into four clusters (phases); one of which turned out to be the desired
monoclinic β-TaON phase. Using high-resolution XRD, we determined that
the β-TaON region of the film was a 260 Å thick single-crystal epitaxial with
the substrate, having out-of-plane β-TaON (100)//α-Al2O3 (012) and in-
plane β-TaON (010)//α-Al2O3 (21̅0). X-ray reflectivity (XRR) analysis of the
β-TaON region of the film showed an electron density matching that expected for β-TaON. X-ray photoelectron spectroscopy
(XPS) showed a Ta5+ valence state in the β-TaON region of the film. This combinatorial approach, which produces a library of
phases on a single wafer, proved to be very efficient for the growth of a material’s phase of interest.
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■ INTRODUCTION

Increasing global energy demands and environmental concerns
due to fossil fuel consumption obligates the search for
renewable energy sources, such as solar energy, which is
both clean and abundant. Among the various methods for solar
energy conversion is the production of oxygen and hydrogen
by water splitting. The use of semiconductor materials for
overall water splitting (OWS) into O2 and H2 is an uphill
reaction with a standard Gibb’s free energy of 237 kJ mol−1 =
2.46 eV molecule−1.1−3 When the semiconductor absorbs a
photon with an energy higher than the band gap, an electron is
excited to the conduction band, leaving a hole in the valence
band. The excited electrons and holes separately diffuse to the
surface of the semiconductor and participate in oxidation and
reduction reactions that produce oxygen and hydrogen.4−6

Since the first breakthrough of photocatalytic water splitting
by Honda and Fujishima,7 many semiconductor materials have
been studied for this application. This includes transition metal
oxides, along with oxynitrides, which are attracting much
attention recently.8−18 Many of the transition metal oxides are
suitable materials due to abundance, stability, and nontoxicity,
but their poor charge conductivity and wider band gaps result
in lower efficiencies and the requirement of the higher energy/
UV portion of the solar spectrum. Incorporation of nitrogen
into the transition metal oxides is one way of reducing the

band gap because of the shallow nature of the N 2p orbitals
compared to the O 2p orbitals.19−21

Tantalum oxynitride with a monoclinic crystal structure (β-
TaON) is a very attractive material for this photocatalytic
application.22,23 β-TaON has a band gap of 2.5 eV, which is
within the visible part of the solar spectrum. The valence band
maximum (VBM) and conduction band minimum (CBM) of
this material are optimally positioned with respect to the
reduction and oxidation potentials of the water-splitting
reaction.3,11,24

Apart from the electronic structure of the photocatalytic
material, the functionality strongly depends on the morphology
of the material.25,26 High-quality single-crystalline materials are
required to reduce recombination centers (grain boundaries
and other point defects) and to simplify the study of the
structural and functional characteristics of the material. For
example, the availability of single-crystalline TiO2 made it
possible to study the charge transport, recombination
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mechanisms, and the effect of surface orientation on the
photocatalytic activity.27−29 Several attempts have been made
to grow thin films of TaON using sputter deposition,30−33

pulsed laser deposition (PLD),34 and ammonolysis of
Ta2O5.

1,35−37

There are several crystalline phases of TaOxNy.
4,38 The 1:1:1

composition of TaON is known to exist in three polymorphs:
monoclinic β-TaON (P21/c),

38,39 metastable γ-TaON (C2/
m),38,39 and δ-TaON (I41/amd).

40,41 Among these phases, β-
TaON is semiconducting and the most stable. β-TaON is a
baddeleyite-type structure and isostructural to ZrO2.
To achieve single-crystal epitaxy of a desired film, a substrate

needs to be chosen with a chemical and geometrical match at
the film/substrate interface.42 For β-TaON, r-plane sapphire
(α-Al2O3 (012)) was chosen, which has a pseudo rectangular
surface unit cell with lattice constants as = 5.13 Å and bs = 4.76
Å that reasonably match the rectangular surface unit cell of β-
TaON (100) with lattice constants as = 5.19 Å and bs = 5.04 Å.
For efficiency, our material development process combined a

compositional spread in the synthesis step with high-
throughput measurements of the produced phases.43−46

Machine learning-based big data techniques were used to
convert a large set of experimental data into actionable small
clusters.47−50 In the process of trying to grow a β-TaON thin
film, the stoichiometry (O/N) is crucial to obtaining the
preferred phase.24 Instead of realizing and optimizing the O/N
ratio from a large set of individual thin-film samples, we
deposited a lateral compositional graded thin-film sample using
multitarget PLD.51 Ideally, the composition should range from
TaN at one edge of the substrate to Ta2O5 at the opposite
edge. The use of high-throughput, small-area X-ray diffraction
(XRD) measurements combined with machine learning-based
analysis made it possible to identify the desired β-TaON phase
on the compositionally graded sample.

■ EXPERIMENTAL METHODS
α-Al2O3 (012) (r-plane sapphire) substrates (25 × 25 mm2) were
precleaned with acetone and isopropanol before the introduction into
the PVD Products PLD/MBE 2300 chamber, where the TaOx/TaNy
linear composition gradient films were grown on the substrates by
PLD (see Figure 1).
The PLD system uses a 248 nm KrF excimer laser with a 25 ns

pulse duration. The dense hot-pressed PLD targets of Ta2O5 and TaN
were purchased from Kurt J. Lesker Company. The deposition
ambient was 10 mTorr N2, and the substrate deposition temperature
was 675 °C.
The laterally graded film was obtained using an alternating layer-

by-layer technique in combination with a traveling mask.43 Each TaOx
layer was deposited using 100 laser pulses from the Ta2O5 target,
while the mask swept laterally across the substrate in 20 s (see Figure
1a). Similarly, each TaNy layer was deposited using 300 laser pulses
from the TaN target, while the mask swept in the opposite direction
across the substrate in 20 s. The thicknesses of individual layers at the
two extreme lateral ends, where the composition was 100% TaOx or
100% TaNy, were 1−2 Å. The process of alternating between TaOx

and TaNy wedge-shaped layers was repeated 150 times. A detailed
description is included in the Supporting Information. After
deposition, the thin-film sample was annealed in a tube furnace at
1000 °C for 2 h in nitrogen (99.999%) at ambient pressure to
promote grain growth. Based on X-ray reflectivity (XRR), the total
film thickness was 260 Å at the TaNy and 160 Å at the TaOx end of
the compositional gradient.

Small-area X-ray diffraction (XRD) measurements used a 3 KW Cu
target Rigaku Smartlab with a polycapillary optic (CBO-f unit) that
focused the line source from the X-ray anode to a spot of 400 μm
diameter at the sample. A two-dimensional (2D) HyPix 3000 detector
was used to collect the scattering patterns in a θ/2θ specular reflection
geometry. (See Figure S2 for the X-ray experimental setup.) The 2D
scattering pattern was converted to a one-dimensional (1D) function
I(Q), where the modulus of the scattering vector Q = 4π sin (θ)/λ, 2θ
is the scattering angle, and λ is the X-ray wavelength. The sample was
aligned in the incident beam direction to minimize the X-ray footprint
in the composition gradient direction (Y-direction) to a value of 400
μm. Data were collected in 71 steps along this direction. To
determine the in-plane epitaxial orientation of the film relative to the
substrate lattice, we used parallel beam optics from a 9 KW Cu
rotating anode SmartLab to find the χ and ϕ angles at which off-
specular reflections occurred for the substrate and film. Tilt angle χ is
the angle between the desired off-specular hkl reciprocal space vector
and the Al2O3 (012) vector. Angle ϕ is the azimuthal rotation about
the Al2O3 (012) vector. For increasing the in-plane resolution, 0.5°
soller slits were used on the incident and detector arms of the
diffractometer. The incident beam slits limited the beam width to a 3
mm wide footprint on the sample centered at the location of interest.
This same 9 KW SmartLab was also used for the specular low-angle
X-ray reflectivity measurements.

■ RESULTS AND DISCUSSION

Figure 2a shows the specular X-ray scattered intensity as a
function of Qz and lateral position (Y) along the compositional
gradient direction with a pitch of 350 μm.
Using fuzzy c-means (FCM) clustering, we developed a

Python code for clustering the XRD data based on the
similarity of the diffraction patterns.52 Using unsupervised
machine learning, all of the XRD patterns were grouped into
four clusters (see the Supporting Information for details on
clustering). Peak positions from each cluster are compared to
patterns in the International Centre for Diffraction Data-
Powder Diffraction File (ICDD-PDF) database and matched
to Ta2O5 and TaON phases, as shown in Figure 3. In
particular, cluster 0, which extends from Y = −12.5 to −6 mm,
encompassing the nitrogen-rich region of the composition
gradient, is dominated by β-TaON. Only a very minor
contribution from Ta2O5 is evident in this cluster. In contrast,
clusters 1, 2, and 3 are all largely described by Ta2O5, with
discrepancies due to differences in crystallinity and orientation.
Because of peak overlap in the XRD data, the presence of
nitride phases (TaN, Ta3N5) cannot be ruled out. However, as
shown in Figure S6, we can rule out these phases based on XPS
analysis. Rietveld refinement of the specular XRD data on the
nitrogen-rich end of the gradient shows that the pattern can be

Figure 1. Depiction of the TaOxNy thin film grown by PLD on α-Al2O3(012). (a) Deposition of the TaOx/TaNy linear composition gradient film.
(b) TaOxNy thin film with a composition gradient along the Y-direction and uniform along the X-direction.
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described as 99% β-TaON with a trace amount of Ta2O5 (see
Figure S5). Even on the nitrogen-rich end, there is substantial
oxygen incorporation that occurred during film growth from
TaN PLD target and/or postgrowth annealing.
The relatively high intensities from the (200) and (300)

peaks of β-TaON in cluster 0 at Qz = 2.57 and 3.84 Å−1 point
to the possibility of texture or single-crystal epitaxy in the

(100) direction. To evaluate this possibility, we performed
additional diffraction studies (Figures 4 and 5) probing an area
of the film entirely within cluster 0, i.e., centered at Y = −8.7
mm, using a parallel beam X-ray setup with a beam width of 3
mm along the Y-direction.
We performed a higher-resolution longitudinal Qz scan

(Figure 4a) and a transverse Qx scan (Figure 4b) through the
(200) peak. The calculated crystallite sizes in lateral and
normal directions on the film, from FWHM of the Qz and Qx,
are 251 and 105 Å, respectively. The narrow width of the
substrate rocking curve, as shown in Figure 4c, confirms that
the broadening of the film peaks was not due to instrument
resolution. To explore if the peak in the Qx scan (Figure 4b)
indicates single-crystal epitaxy or just texture; we performed φ-
scans at the off-specular β-TaON (130), (111̅), and (110)
Bragg conditions (see Figure 5a). Comparing the peak
positions in these φ-scans to that of the α-Al2O3 (113)
indicates that the film is epitaxial with out-of-plane β-TaON
(100)//α-Al2O3 (012) and in-plane β-TaON (010)//α-Al2O3
(21̅0). The stereographic projection of the hkl poles in Figure
5b helps explain the directional relationships between the two
lattices.
For the case of single-crystal β-TaON (100) only, two peaks

are expected in a φ-scan of the (111̅) reflection (shown in
Figure 5b separated by Δϕ = 91.6°), whereas four peaks are
present in the experiment (see Figure 5a). This is due to
nucleation and growth leading to two morphologically
equivalent in-plane orientations for β-TaON (100)/α-
Al2O3(012), one orientation with β-TaON(010)//α-
Al2O3(100) and the other orientation with β-TaON(01̅0)//
α-Al2O3(100) as represented in Figure 6b. As a result of this
twinning, a mirror symmetry in the φ-scan of (111̅) poles is
observed instead of just two peaks separated by 91.6°.
After confirming the β-TaON crystalline phase presence and

epitaxial relations, the β-TaON density was compared to that
of the bulk crystal. A low-angle X-ray reflectivity (XRR)
measurement was performed at the location of the β-TaON on
the compositionally graded sample using a parallel beam setup
with an X-ray beam width of 3 mm. As shown in Figure 7,
along with the fit to the XRR, data determines the electron
density profile.53 From this fit, we find a film thickness of 260
Å and electron densities that match the expected bulk values of
2.65 and 1.19 e Å−3 for β-TaON and α-Al2O3, respectively.
The film thickness closely matches the out-of-plane single-
crystal domain size of 251 Å obtained from Figure 4a Qz scan,
further confirming the single-crystal nature of the film in this
region.

Figure 2. Focused beam XRD data. (a) Specular XRD intensities
I(Q) collected as a function of Y along the composition gradient of
the film. The highest intensities at QZ = 1.81 and 3.61 Å−1 are from
the Al2O3 (012) and (024) Bragg peaks. (b) XRD patterns from the
film are separated into four clusters by unsupervised machine learning.
Membership represents the probability of a pattern belonging to a
cluster.

Figure 3. Representative XRD intensity patterns from Figure 2 for the
four clusters with identified peaks from the Ta2O5 and TaON phases.
The peaks in cluster 0 at QZ = 2.57 and 3.84 Å−1 correspond to the β-
TaON (200) and (300) planes, respectively. The high-intensity peaks
at 1.81 and 3.61 Å−1 are from the single-crystal substrate α-Al2O3
(012) and (024) planes, respectively. Each XRD intensity curve is
offset by 1 decade for purposes of clarity. ‡ refers to unidentified
peaks.

Figure 4. Parallel beam XRD data from the location centered at Y = −8.65 mm (with a breadth of 3 mm). (a) β-TaON (200) peak from θ/2θ scan
with a full width at half-maximum (FWHM) ΔQz = 0.025 Å−1, which corresponds to an out-of-plane single-crystal domain size DZ = 251 Å. (b) β-
TaON (200) peak from ω-scan with FWHM ΔQx = 0.06 Å−1, corresponds to in-plane single-crystal domain size DX = 105 Å. (c) ω-scan of α-Al2O3
(012) with FWHM ΔQx = 0.00027 Å−1, corresponds to diffractometer resolution.
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■ CONCLUSIONS
In summary, PLD film growth from TaN and Ta2O5 end
members and high-throughput XRD characterization com-
bined with machine learning-based data reduction techniques
made the identification of epitaxial β-TaON(100)/α-
Al2O3(012) possible in an efficient manner. Small-area X-ray
diffraction and XPS studies showed β-TaON as the dominant
phase at the nitrogen-rich end of the film, with Ta2O5
occurring at the oxygen-rich end. X-ray φ-scans of the off-
specular reflections from the film and substrate at a β-TaON

dominated position showed the epitaxial relation β-TaON
(100)//α-Al2O3 (012) and β-TaON (010)//α-Al2O3 (21̅0). A
fit to the specular XRR reflectivity (at this same position)
yielded a film thickness of 260 Å and a calculated electron
density of 2.63 e Å−3, matching with the expected value 2.65 e
Å−3 for β-TaON. Our results indicate that graded film
synthesis, in tandem with high-throughput XRD and machine
learning tools, provides a novel approach to effectively and
efficiently identify synthesis routes to desired materials.
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